Hash 日常摸鱼笔记
本篇文章是Hash在信息学竞赛中的应用的学习笔记,分多次更新(已经有很多坑了)
一维递推
首先是Rabin-Karp,对于一个长度为\(m\)的串\(S\)
\(f(S)=\sum_{i=1}^{m}s[i]*p^{m-i} \mod q\)
那么在一个长度为\(n\)的文本串中找长度为\(m\)的子串,设该子串的首位下标为\(i\)
\(f(S_i)=\sum_{j=i}^{m+i-1}s[j]*p^{(m+i-1)-j} \mod q\)
\(f(S_{i+1})=\sum_{j=i+1}^{m+i}s[j]*p^{m+i-j} \mod q\)
\(f(S_{i+1})=p*[\sum_{j=i}^{m+i-1}s[j]*p^{(m+i-1)-j}]-p^m*s[i]+s[i+m] \mod q\)
\(f(S_{i+1})=p*f(S_i)+s[i+m]-p^m*s[i] \mod q\)
二维扩展
设文本串为二维,维度尺寸分别为\(n1,n2\),模式串也为二维,\(m1≤n1,m2≤n2\)
对于模式串的处理
\(f_2(S)=\sum_{i1=1}^{m1}\sum_{i2=1}^{m2}p_1^{m1-i1}*p_2^{m2-i2}*s[i1][i2] \mod q\)
对于一个文本串中开始下标为\(i1,i2\),尺寸大小为\(m1,m2\)的子串
\(f_2(S_{i1,i2})=\sum_{j1=i1}^{m1+i1-1}\sum_{j2=i2}^{m2+i2-1}p_1^{(m1+i1-1)-j1}*p_2^{(m2+i2-1)-j2}*s[j1][j2] \mod q\)
\(f_2(S_{i1,i2+1})=\sum_{j1=i1}^{m1+i1-1}\sum_{j2=i2+1}^{m2+i2}p_1^{(m1+i1-1)-j1}*p_2^{(m2+i2)-j2}*s[j1][j2] \mod q\)
\(f_2(S_{i1,i2+1})=\sum_{j1=i1}^{m1+i1-1}p_1^{(m1+i1-1)-j1}(p_2*\sum_{j2=i2}^{m2+i2-1}s[j1][j2]*p_2^{(m2+i2-1)-j2}+s[j1][i2+m2]-p_2^{m2}*s[j1][i2]) \mod q\)
\(f_2(S_{i1,i2+1})=p_2*f_2(S_{i1,i2})+\sum_{j1=i1}^{m1+i1-1}p_1^{(m1+i1-1)-j1}*s[j1][i2+m2]-p_2^{m2}\sum_{j1=i1}^{m1+i1-1}p_1^{(m1+i1-1)-j1}*s[j1][i2] \mod q\)
三维扩展
我可去他妈的
动态匹配
1.拼接Hash
比较显然,\(f(S_1+S_2)=p^{len_2}f(S_1)+f(S_2)\)
2.截断Hash
可以看成上式的逆运算,\(f(S_1)=f(S_1+S_2-S_2)=\frac{f(S_1+S_2)-f(S_2)}{p^{len_2}}\)
3.插入Hash
如果在\(i\)后插入,先截去\(i+1\)后的部分,拼接插入部分,再拼接截去部分
4.删去Hash
同理
5.平衡树上维护Hash
\(f(S)=f(S_l)*(size[rc]+1)+f(s)*size[rc]+f(S_r)\)
要点:
1.\(p\)在不同的维度选取不同的数
2.\(q\)选取一个较大素数,至少大于\(n/k\),其中\(n=n1*n2...*nk\)
3.\(p^{i} \mod q ≠ 1,i∈[1,p-2]\)
(所以简单地说就是\(p\)和\(q\)都选大素数)
个人的口胡:
1.对于原字符串的值,可以再多加一层哈希映射,把每个值都映射为均不同与\(p\)和\(q\)的的素数,翻车概率down
2.unordered_map支持的\(O(1)\)操作也许能哈希出奇迹
Hash 日常摸鱼笔记的更多相关文章
- 【FCS NOI2018】福建省冬摸鱼笔记 day3
第三天. 计算几何,讲师:叶芃(péng). dalao们日常不记笔记.@ghostfly233说他都知道了,就盼着自适应辛普森积分. 我计算几何基础不好……然而还是没怎么讲实现,感觉没听什么东西进去 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day2
第二天. 同学还是不带本子记笔记.dalao. 第二天:图论,讲师:@ExfJoe 全程划水,前面都讲水算法[虽然我可能已经忘记了]什么最短路,Tarjan,最小生成树,2SAT,差分约束啥的,我现在 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day1
省冬的第一天. 带了本子,笔,一本<算法导论>就去了.惊讶于为什么同学不带本子记笔记. 他们说:“都学过了.”,果然这才是巨神吧. 第一天:数论,讲师:zzx 前几页的课件挺水,瞎记了点笔 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day6【FJOI 2018】福建省选混分滚蛋记 day1
记录一下day6发生的事情吧. 7:30 到达附中求索碑,被人膜,掉RP. 7:50 进考场,6楼的最后一排的最左边的位置,世界上最角落的地方,没有任何想法. 发现电脑时间和别人不一样,赶快调了一下. ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day5
第五天,也是讲课的最后一天. 数据结构专题,讲师:杨志灿 他的blog我似乎找不到了……以前肯定是在百度博客里面.但是现在百度博客消失了. PPT做的很有感觉,说了很多实用的技巧. 我觉得其实是收获最 ...
- 【FCS NOI2018】福建省冬摸鱼笔记 day4
第四天. 动态规划专题,讲师:闫神 讲了一些DP优化技巧,然而思想难度好大啊……根本没想到能优化那地步,连DP方程都没有呢. 不过有几题我还是想明白了. 讲了单调队列,决策单调性,四边形不等式,斜率优 ...
- 可持久化Treap 赛前摸鱼笔记
1.基本结构 随机化工具 unsigned int SEED = 19260817; //+1s inline int Rand(){ SEED=SEED*1103515245+12345; retu ...
- [日常摸鱼]HDU1724 Ellipse-自适应Simpson法
模板题~ QAQ话说Simpson法的原理我还是不太懂-如果有懂的dalao麻烦告诉我~ 题意:每次给一个椭圆的标准方程,求夹在直线$x=l$和$x=r$之间的面积 Simpson法 (好像有时候也被 ...
- [日常摸鱼]bzoj1257余数之和
题意:输入$k,n$,求$\sum_{i=1}^n k \mod i$ $k \mod i=k-i*\lfloor \frac{k}{i} \rfloor $,$n$个$k$直接求和,后面那个东西像比 ...
随机推荐
- lunix tomcat重启脚步
[wlcf@iZbp12oby5qekkz14dlokeZ ~]$ cat restart_tomcat #!/bin/shif [ $# != 1 ] ; then echo "USAGE ...
- SqlServer—大话函数依赖与范式
说明:数据库中的某些概念真的很让人头疼,概念的东西本来就是很枯燥的,再加上枯燥的学习,那就更加枯燥了.概念这东西,你不理解也能生产东西,经验多了就行,但是为了更深入的学习,你还必须理解.这里,我抛开书 ...
- CentOS集群自动同步时间的一种方法
CentOS集群自动同步时间的一种方法 之前有篇日志是手动同步时间的 http://www.ahlinux.com/os/201304/202456.html 之所以这么干,是因为我们实验室的局域网只 ...
- html页面的局部刷新
有时候我们在做一个动态/静态网页,网页中的某部分需要从服务器获取值但是不能把整个页面都提交到服务器,也就是要对页面做局部刷新,也就是对整个网页无刷新更新值.在这种情况下就需要用JS和XMLHttpRe ...
- Entity Framework Tutorial Basics(43):Download Sample Project
Download Sample Project: Download sample project for basic Entity Framework tutorials. Sample projec ...
- LinkedHashMap原理以及场景
http://www.cnblogs.com/xiaoxi/p/6170590.html
- Mbatis——动态SQL
<?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper PUBLIC "- ...
- Mybatis_映射文件_Select
一.Select元素来定义查询操作 Id:唯一标识符.用来引用这条SQL语句,需要和接口的方法名一致 parameterType:参数类型.可以不传,MyBatis会根据TypeHandler自动推断 ...
- 当Linux用尽内存
Mulyadi Santosa 也许你很少面临这一情况,但是一旦如此,你一定知道出什么错了:可用内存不足或者说内存用尽(OOM).结果非常典型:你不能再分配内存,内核会杀掉一个任务(一般是正在运行那个 ...
- 编写高质量代码改善C#程序的157个建议——建议53:必要时应将不再使用的对象引用赋值为null
建议53:必要时应将不再使用的对象引用赋值为null 在CLR托管的应用程序中,存在一个“根”的概念,类型的静态字段.方法参数.以及局部变量都可以作为“根”的存在(值类型不能作为“根”,只有引用类型的 ...