题目描述

求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果。


题解

状压dp+容斥原理

设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum[i]}$ 减去不为强连通图的方案数得到强连通图的方案数,其中 $sum[i]$ 表示点集 $i$ 中边的数目。

考虑什么样的图不是强连通图:缩点后入度为0的强连通分量对应的点集不是全集。

枚举这些入度为0的强连通分量对应的点集,由于无法保证只有这些点构成的入度为0的强连通分量,因此需要进一步容斥。推之可以发现容斥系数与这些点形成的强连通分量数目的奇偶性有关。

更具体来讲,形成奇数个强连通分量时容斥系数为正(即减去),形成偶数个强连通分量为负(即加上)。

设 $g[i]=i个点形成奇数个强连通分量的方案数-i个点形成偶数个强连通分量的方案数$ ,那么枚举 $i$ 中编号最小的点所在连通块 $i-j$ (即枚举剩下部分 $x$ 不与编号最小的点相连的强连通分量 $j$ ),则有 $g[i]=-\sum\limits_{j\subset x}f[i-j]·g[j]$ 。注意此时的 $g$ 不包含 $i$ 只形成一个强连通分量的情况,以便下面 $f$ 的容斥。

那么枚举钦定的入度为0的强连通分量 $j$ ,就有 $f$ 的转移:$f[i]=2^{sum[i]}-\sum\limits_{j\subset i}2^{sum[i]-w[j]}·g[j]$ ,其中 $w[j]$ 表示 $i$ 向 $j$ 连边的数目,表示钦定的点不能被连边,其它的随意连。

最后将只有一个强连通分量的方案 $f[i]$ 算进 $g[i]$ 。

答案就是 $f[2^n-1]$ 。

时间复杂度 $O(3^n)$

#include <cstdio>
#define N 32775
#define mod 1000000007
typedef long long ll;
int in[N] , out[N] , cnt[N] , sum[N] , w[N];
ll b[215] , f[N] , g[N];
void dfs(int i , int j)
{
if(i & (j - 1)) dfs(i , i & (j - 1));
w[j] = w[j - (j & -j)] + cnt[in[j & -j] & i];
}
int main()
{
int n , m , i , j , x , y;
scanf("%d%d" , &n , &m);
b[0] = 1;
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d" , &x , &y) , x -- , y -- ;
in[1 << y] |= 1 << x , out[1 << x] |= 1 << y;
b[i] = b[i - 1] * 2 % mod;
}
for(i = 1 ; i < (1 << n) ; i ++ )
{
x = i - (i & -i) , cnt[i] = cnt[x] + 1 , sum[i] = sum[x] + cnt[in[i & -i] & i] + cnt[out[i & -i] & i] , f[i] = b[sum[i]];
dfs(i , i);
for(j = x ; j ; j = x & (j - 1)) g[i] = (g[i] - f[i ^ j] * g[j] % mod + mod) % mod;
for(j = i ; j ; j = i & (j - 1)) f[i] = (f[i] - b[sum[i] - w[j]] * g[j] % mod + mod) % mod;
g[i] = (g[i] + f[i]) % mod;
}
printf("%lld\n" , f[(1 << n) - 1]);
return 0;
}

【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理的更多相关文章

  1. 【UOJ#37】 [清华集训2014] 主旋律

    题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...

  2. uoj#37. 【清华集训2014】主旋律(状压dp+容斥)

    传送门 第一眼容斥,然后我就死活容不出来了-- 记\(f_i\)为点集\(i\)中的点强联通的方案数,那么就是总的方案数减去使\(i\)不连通的方案数 如果\(i\)不连通的话,我们可以枚举缩点之后拓 ...

  3. UOJ#37. 【清华集训2014】主旋律

    题目大意: 传送门 题解: 神题……Orz. 首先正难则反. 设$f_S$表示选取点集状态为s时,这部分图可以构成非强联通图的方案数. 设$p_{S,i}$表示点集s缩点后有i个入度为0点的方案数,保 ...

  4. BZOJ3812 清华集训2014 主旋律

    直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...

  5. 【bzoj2560】串珠子 状压dp+容斥原理

    题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...

  6. uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题

    [清华集训2014]矩阵变换 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...

  7. BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...

  8. 4455: [Zjoi2016]小星星|状压DP|容斥原理

    OrzSDOIR1ak的晨神 能够考虑状压DP枚举子集,求出仅仅保证连通性不保证一一相应的状态下的方案数,然后容斥一下就是终于的答案 #include<algorithm> #includ ...

  9. UOJ#46. 【清华集训2014】玄学

    传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...

随机推荐

  1. 2018年美国大学生数学建模竞赛(MCM/ICM) 比赛心得

    话不多说,题目先上: 这是我们这次选择的题目,说说建模的那些事! 美赛的时间和国赛挑战杯时间略有不同,貌似多的一天是为了让我们对文章进行一个翻译吧QAQ 建议参加美赛的同学可以参照此计划进行 Day0 ...

  2. hover时显示可跟随鼠标移动的浮动框,运用函数节流与去抖进行优化

    在很多笔试面试题中总能看到js函数去抖和函数节流,看过很多关于这两者的讨论,最近终于在一个需求中使用了函数去抖(debounce)和函数节流(throttle). 需要完成的效果是,鼠标在表格的单元格 ...

  3. 我看微软收购GitHub

    今天是微软收购GitHub的第三天,之前很多人担心被微软收购的GitHub会步Skype,诺基亚等企业的后尘,凡此种种我觉得更多人的担心是:GitHub不再开源免费罢了. GitHub今年4月刚成立十 ...

  4. SICP读书笔记 2.1

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  5. 【坚持】Selenium+Python学习记录 DAY11

    2018/06/1-2018/06/4 参考资料: [菜鸟教程](http://www.runoob.com/python3/python3-examples.html) [Python解惑:True ...

  6. swoole中退出、异常与错误的处理笔记

    关于PHP这方面的知识 可以看 https://www.cnblogs.com/zyf-zhaoyafei/p/6928149.html 进行补课 然后下面记录一下使用swoole的时候需要注意的地方 ...

  7. java浮点数存储

    转自: [解惑]剖析float型的内存存储和精度丢失问题 1.小数的二进制表示问题 首先我们要搞清楚下面两个问题: (1)  十进制整数如何转化为二进制数 算法很简单.举个例子,11表示成二进制数: ...

  8. 欢迎来怼--第二十九次Scrum会议

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/17 15:55~16:25,总计30min. 地 ...

  9. Teamproject Week7 --Scrum Meeting #1 2014.10.28

    这是团队的第一次会议,具体议题如下: 1)我们明确了团队成员的职责所需: PM职责:根据项目范围.质量.时间与成本的综合因素的考虑,进行项目的总体规划与阶段计划.  控制项目组各成员的工作进度,即时了 ...

  10. java的第一个实验

    实验一 Java开发环境的熟悉 北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计 班级:1352 姓名:林涵锦 学号:20135213 成绩:        ...