[HNOI2008]越狱

Description

监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

输入格式:输入两个整数M,N.1<=M<=108,1<=N<=1012

输出格式:可能越狱的状态数,模100003取余

Solution

1.直接计算所有的越狱方案不方便,考虑使用容斥原理分别计算总方案数和不越狱方案数,相减即可;

2.总方案数为 m^n,因为共有 n个房间,每个有 m个选择;

3.不会越狱的方案数为 m*(m-1)^(n-1),因为第一个房间有 m种选择,后面的每个都要和前面的不同,后面的每个都有 m-1个选择

4.因为要取模,所以不需要考虑使用高精,注意取模的细节。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std; ll n,m,ans,power1,power2; ll qp(ll x,ll y){
ll ans=1;
while(y){
if(y&1){ans=(ans*x)%100003;y^=1;}
else{
x=(x*x)%100003;
y>>=1;
}
}
return ans;
} int main(){
scanf("%lld %lld",&m,&n);
power1=qp(m,n);
power2=(m*qp(m-1,n-1))%100003;
printf("%lld\n",(power1-power2+100003)%100003);
return 0;
}

[HNOI2008]越狱 题解(容斥原理+快速幂)的更多相关文章

  1. 【BZOJ1008】1008: [HNOI2008]越狱 简单组合数学+快速幂

    Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...

  2. 洛谷 P3197 [HNOI2008]越狱 题解

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...

  3. [bzoj1706]奶牛接力跑 题解 (矩阵快速幂(或者叫倍增Floyd?))

    Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...

  4. BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)

    题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...

  5. P5035金坷垃题解(快速幂的讲解)

      首先经过读题,我们发现找到合格的金坷垃,怎么样的金坷垃才是合格的呢?(我们不难发现1肯定是合格的[题目已经给出了]) 然后我们开始手推一下之后合格的金坷垃: 2-1=1(合格) 3-1-1=1(不 ...

  6. HDU 4059 容斥原理+快速幂+逆元

    E - The Boss on Mars Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  7. BZOJ1008:[HNOI2008]越狱——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=1008 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中 ...

  8. BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)

    题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...

  9. BZOJ1009: [HNOI2008]GT考试 矩阵快速幂+kmp+dp

    这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前 ...

随机推荐

  1. canvas制作原生的百分比圆形比例等

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  2. 服务 在初始化安装时发生异常:System.IO.FileNotFoundException: 未能加载文件或******

    这个问题是在用installutil.exe安装服务时候碰到的 解决方法就是把installutil.exe文件直接复制到要安装的目录下 installutil.exe的所在位置 windows/mi ...

  3. 解决win10激活错误代码0xc004c003

    打开命令窗口(管理员). win10电脑图解-2 输入slmgr.vbs /upk,回车 激活错误电脑图解-3 输入:slmgr /ipk W269N-WFGWX-YVC9B-4J6C9-T83GX, ...

  4. mysql EXPLAIN 参数表

    测试样式: 参数详情:

  5. PHP 常用函数总结(二)

    4.PHP处理数据库的常用函数. 汇总表 PHP 5 MySQLi 函数 函数 描述 mysqli_affected_rows() 返回前一个 Mysql 操作的受影响行数. mysqli_autoc ...

  6. [华商韬略] 拉里·埃里森(Larry Elison) 的传奇人生

    拉里·埃里森(Larry Elison) 的传奇人生   开战机.玩游艇.盖皇宫,挑战比尔·盖茨,干掉50多家硅谷豪强……全世界比拉里·埃里森更有钱的只有5个,像他这样的硅谷“坏孩子”却是唯一. 19 ...

  7. CSS 报错

  8. 子类的实例给父类的引用 在编译器时候 jvm认为他是父类的实例 只会去寻找父类里面的方法 如果调用子类里面的属性或者方法时候 jvm会认为该引用并没有 所以会报错

  9. Qt——数据库编程

    一.概述 Qt提供了一个类似JDBC的数据库接口,需要为每个可以连接的特定数据库提供驱动程序,可以通过 QStringList QSqlDatabase::drivers() 知道当前版本的Qt哪些驱 ...

  10. BZOJ5323 JXOI2018游戏(线性筛+组合数学)

    可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然 ...