[HNOI2008]越狱 题解(容斥原理+快速幂)
[HNOI2008]越狱
Description
监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
输入格式:输入两个整数M,N.1<=M<=108,1<=N<=1012
输出格式:可能越狱的状态数,模100003取余
Solution
1.直接计算所有的越狱方案不方便,考虑使用容斥原理分别计算总方案数和不越狱方案数,相减即可;
2.总方案数为 m^n,因为共有 n个房间,每个有 m个选择;
3.不会越狱的方案数为 m*(m-1)^(n-1),因为第一个房间有 m种选择,后面的每个都要和前面的不同,后面的每个都有 m-1个选择
4.因为要取模,所以不需要考虑使用高精,注意取模的细节。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
ll n,m,ans,power1,power2;
ll qp(ll x,ll y){
ll ans=1;
while(y){
if(y&1){ans=(ans*x)%100003;y^=1;}
else{
x=(x*x)%100003;
y>>=1;
}
}
return ans;
}
int main(){
scanf("%lld %lld",&m,&n);
power1=qp(m,n);
power2=(m*qp(m-1,n-1))%100003;
printf("%lld\n",(power1-power2+100003)%100003);
return 0;
}
[HNOI2008]越狱 题解(容斥原理+快速幂)的更多相关文章
- 【BZOJ1008】1008: [HNOI2008]越狱 简单组合数学+快速幂
Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...
- 洛谷 P3197 [HNOI2008]越狱 题解
P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...
- [bzoj1706]奶牛接力跑 题解 (矩阵快速幂(或者叫倍增Floyd?))
Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...
- BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)
题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...
- P5035金坷垃题解(快速幂的讲解)
首先经过读题,我们发现找到合格的金坷垃,怎么样的金坷垃才是合格的呢?(我们不难发现1肯定是合格的[题目已经给出了]) 然后我们开始手推一下之后合格的金坷垃: 2-1=1(合格) 3-1-1=1(不 ...
- HDU 4059 容斥原理+快速幂+逆元
E - The Boss on Mars Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- BZOJ1008:[HNOI2008]越狱——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1008 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中 ...
- BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)
题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...
- BZOJ1009: [HNOI2008]GT考试 矩阵快速幂+kmp+dp
这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前 ...
随机推荐
- 微信小程序入门一: 简易form、本地存储
实例内容 登陆界面 处理登陆表单数据 处理登陆表单数据(异步) 清除本地数据 实例一: 登陆界面 在app.json中添加登陆页面pages/login/login,并设置为入口. 保存后,自动生成相 ...
- 相见恨晚的 scala - 01 [ 基础 ]
简洁到不行,多一个分号都是不应该. 学习笔记: centOS 下安装 scala 和安装 jdk 一毛一样 . 1 . 不同于 Java 的变量声明 :( 但是和 js 很像 ) /** * Crea ...
- (很难啊)如何实时获取DBGrid 中当前单元格输入的内容? [问题点数:100分,结帖人yifawu100]
如何获取DBGrid 中当前单元格输入的内容? 还没输入完成,我想实时获取 Cell中的内容,以便作其他处理,用什么事件呢? 所以Field的Onchange事件是没用的. DBGrid1.Selec ...
- oracle表空间到32G后扩容
), ) total_space FROM dba_data_files ORDER BY tablespace_name; /*查看表空间的使用情况*/ select a.a1 表空间名称, tru ...
- Django 2.0 学习(19):Django 分页器
Django 分页器 要使用Django实现分页功能,必须从Django中导入Paginator模块(painator - 分页器) views.py from django.shortcuts im ...
- P2234 [HNOI2002]营业额统计
题目描述 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是 ...
- [POJ1704]Georgia and Bob 博弈论
从这开始我们来进入做题环节!作为一个较为抽象的知识点,博弈论一定要结合题目才更显魅力.今天,我主要介绍一些经典的题目,重点是去理解模型的转化,sg函数的推理和证明.话不多说,现在开始! Georgia ...
- 模板:CDQ分治
UPD:18.06.15修正一些错误,感谢评论区巨佬orz CDQ分治不是一个顾名思义的东西,CDQ分治是为了纪念神犇陈丹琦而命名的一种算法. 那么CDQ分治能干什么?CDQ分治主要是用来解决一类”操 ...
- USACO Section 1.5 Number Triangles 解题报告
题目 题目描述 现在有一个数字三角形,第一行有一个数字,第二行有两个数字,以此类推...,现在从第一行开始累加,每次在一个节点累加完之后,下一个节点必须是它的左下方的那个节点或者是右下方那个节点,一直 ...
- 【BZOJ 1098】办公楼(补图连通块个数,Bfs)
补图连通块个数这大概是一个套路吧,我之前没有见到过,想了好久都没有想出来QaQ 事实上这个做法本身就是一个朴素算法,但进行巧妙的实现,就可以分析出它的上界不会超过 $O(n + m)$. 接下来介绍一 ...