【BZOJ2733】永无乡(线段树,并查集)
【BZOJ2733】永无乡(线段树,并查集)
题面
题解
线段树合并
线段树合并是一个很有趣的姿势
前置技能:动态开点线段树
具体实现:每次合并两棵线段树的时候,假设叫做\(t1,t2\),其中要把\(t2\)合并进\(t1\)中
假设当前位置\(t1\)没有节点,则直接把\(t2\)的这个位置给\(t1\)(直接接上去就好啦)
如果\(t2\)这个位置没有节点,那么直接\(return\)
否则,两个位置都有节点,把两个节点的信息合并,然后递归合并左右子树
简单的代码如下:
void MergeNode(int &r1,int r2)
{
if(!r1){r1=r2;return;}
if(!r2)return;
t[r1].v+=t[r2].v;
MergeNode(t[r1].ls,t[r2].ls);
MergeNode(t[r1].rs,t[r2].rs);
}
回到这道题目
对于每一个联通快维护一个值域线段树
每次在线段树上二分一下第\(K\)大就好了
每次修桥相当于合并两棵线段树
用并查集维护一下联通快就可以啦,多简单
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 120000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,Q;
struct Node
{
int ls,rs;
int v;
}t[MAX<<4];
int tot;
int a[MAX];
void Modify(int &x,int l,int r,int p)
{
if(!x)x=++tot;t[x].v++;
if(l==r)return;
int mid=(l+r)>>1;
if(p<=mid)Modify(t[x].ls,l,mid,p);
else Modify(t[x].rs,mid+1,r,p);
}
void MergeNode(int &r1,int r2)
{
if(!r1){r1=r2;return;}
if(!r2)return;
t[r1].v+=t[r2].v;
MergeNode(t[r1].ls,t[r2].ls);
MergeNode(t[r1].rs,t[r2].rs);
}
int Query(int x,int l,int r,int K)
{
if(l==r)return l;
int mid=(l+r)>>1;
if(K<=t[t[x].ls].v)return Query(t[x].ls,l,mid,K);
else return Query(t[x].rs,mid+1,r,K-t[t[x].ls].v);
}
int f[MAX],rt[MAX];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)
{
int x=read();a[x]=i;
Modify(rt[f[i]=i],1,n,x);
}
while(m--)
{
int a=read(),b=read();
a=getf(a);b=getf(b);
if(a==b)continue;
f[b]=a;
MergeNode(rt[a],rt[b]);
}
Q=read();
char opt[5];
while(Q--)
{
scanf("%s",opt);
if(opt[0]=='Q')
{
int x=read(),k=read();
x=getf(x);
if(t[rt[x]].v<k)puts("-1");
else printf("%d\n",a[Query(rt[x],1,n,k)]);
}
else
{
int u=read(),v=read();
u=getf(u),v=getf(v);
if(u==v)continue;
f[v]=u;
MergeNode(rt[u],rt[v]);
}
}
return 0;
}
【BZOJ2733】永无乡(线段树,并查集)的更多相关文章
- BZOJ 2733 [HNOI2012]永无乡 ——线段树 并查集
用并查集维护联通块. 用线段树的合并来合并联通块. 自己YY了一个写法. #include <map> #include <cmath> #include <queue& ...
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)
题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...
- 【bzoj2733】[HNOI2012]永无乡 线段树合并
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- 【BZOJ2733】【HNOI2012】永无乡 - 线段树合并
题意: Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通 ...
- bzoj2733: [HNOI2012]永无乡 线段树合并
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...
- bzoj 2733 : [HNOI2012]永无乡 (线段树合并)
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- [HNOI2012]永无乡 线段树合并
[HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...
- bzoj 2733: [HNOI2012]永无乡 -- 线段树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...
- Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...
随机推荐
- java四种访问权限修饰符
java中四个访问权限修饰符: public(公开的).protected(受保护的).default(默认的).private(私有的). 它们决定了紧跟其后被定义的东西的使用范围. 适用范围< ...
- 配置Ubuntu16.04虚拟机 (用途:CTF_pwn)
因为学习需要16.xx的虚拟机,所以把之前18.04的Ubuntu卸掉重装了一遍Ubuntu16.04, 考虑到我有备份和重装系统的爱好,故记之,以备后用. 目录: //最后更新时间:190122·1 ...
- Python基础_异常处理与跟踪
异常的种类 AttributeError 试图访问一个对象没有的树形,比如foo.x,但是foo没有属性x IOError 输入/输出异常:基本上是无法打开文件 ImportError 无法引入模块或 ...
- centos7安装oracle亲测可用
http://www.linuxidc.com/Linux/2016-04/130559p2.htm
- Xcode中的Target
Xcode中的Target,主要包含下面几点知识: Target依赖 Build Phase Build Rule Target依赖 Target的依赖关系表示一个Target要构建成功,必先依赖于其 ...
- vue-cli 安装步骤(转载)
参考资料:Vue2.0 新手完全填坑攻略—从环境搭建到发布 1.Node.js安装 https://nodejs.org/en/download/ 2.安装vue-cli npm install -g ...
- 3ds Max学习日记(十)——显示场景资源管理器
之前把max的对象窗口(场景资源管理器)给弄没了,搞了半天都不知道怎么调回来,百度搜索到的结果也不知道都是些啥玩意.不过好在最后还是弄出来了! 一开始是下面这样的,没有场景资源管理器用起来很不 ...
- shutdown&&isTerminated
shutdownvoid shutdown()启动一次顺序关闭,执行以前提交的任务,但不接受新任务.若已经关闭,则调用没有其他作用.抛出:SecurityException - 如果安全管理器存在并且 ...
- Mysql高并发情况下的解决方案(转)
查询了下Mysql 关于高并发的处理的资料,在这记录一下. 高并发大多的瓶颈在后台数据逻辑处理,在存储,mysql的正常的优化方案如下: 1.代码中sql语句优化 2.数据库字段优化,索引优化 3.加 ...
- [转帖]overlay文件系统解析
overlay文件系统解析 来源:http://dockone.io/article/1511 原作者: 陈爱珍 布道师@七牛云 一个 overlay 文件系统包含两个文件系统,一个 upper 文件 ...