多重背包, 要求 \(N\log N\) 复杂度

Solution

众所周和, \(1-N\) 之内的任何数可以由 \(2^{0}, 2^{1}, 2^{2} ... 2^{\log N}, N - 2^{\log N}\) 拼凑而成

我们知道一定有一种最优方案, 使得第 \(i\) 种物品只消耗 \(x\) 个 \((x <= n_{i})\)

而 \(x\) 可以被二进制凑出来

所以我们先二进制拆分物品件数, 再跑 \(01\) 背包即可

P1776 宝物筛选_NOI导刊2010提高(02)

板题

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 2000019;
LL num, V;
LL v[maxn], w[maxn], cnt;
LL dp[maxn];
int main(){
num = RD(), V = RD();
for(LL i = 1;i <= num;i++){
LL val = RD(), wei = RD(), n = RD(), t = 1;
while(n >= t){
v[++cnt] = val * t, w[cnt] = wei * t;
n -= t;
t <<= 1;
}
v[++cnt] = val * n, w[cnt] = wei * n;
}
for(LL i = 1;i <= cnt;i++){
for(LL j = V;j >= w[i];j--){
dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
}
}
printf("%lld\n", dp[V]);
return 0;
}

P1776 宝物筛选_NOI导刊2010提高(02)&& 多重背包二进制优化的更多相关文章

  1. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)

    P1776 宝物筛选_NOI导刊2010提高(02) 题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了, ...

  2. P1776 宝物筛选_NOI导刊2010提高(02)

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  3. P1776 宝物筛选_NOI导刊2010提高(02)(背包的二进制优化)

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  4. Luogu P1776 宝物筛选_NOI导刊2010提高(02)(多重背包模版)

    传送门 多重背包板子题, 多重背包就是每种东西有好几个,可以把它拆分成一个一个的01背包 优化:二进制拆分(拆成1+2+4+8+16+...) 比如18=1+2+4+8+3,可以证明18以内的任何数都 ...

  5. 洛谷P1776 宝物筛选_NOI导刊2010提高(02)(多重背包,单调队列)

    为了学习单调队列优化DP奔向了此题... 基础的多重背包就不展开了.设\(f_{i,j}\)为选前\(i\)个物品,重量不超过\(j\)的最大价值,\(w\)为重量,\(v\)为价值(蒟蒻有强迫症,特 ...

  6. luogu P1776 宝物筛选_NOI导刊2010提高(02)

    Sto flashhu orz flash太强啦 多重背包裸题(逃 使用压维大法,\(f_i\)为总重量为\(i\)时的答案 对于每种物品,记\(w\)为单个的重量,\(v\)为单个的价值,\(m\) ...

  7. P1799 数列_NOI导刊2010提高(06)

    P1799 数列_NOI导刊2010提高(06)f[i][j]表示前i个数删去j个数得到的最大价值.if(i-j==x) f[i][j]=max(f[i][j],f[i-1][j]+1); else ...

  8. P1771 方程的解_NOI导刊2010提高(01)

    P1771 方程的解_NOI导刊2010提高(01) 按题意用快速幂把$g(x)$求出来 发现这不就是个组合数入门题吗! $k$个人分$g(x)$个苹果,每人最少分$1$个,有几种方法? 根据插板法, ...

  9. 【洛谷】【堆】P1801 黑匣子_NOI导刊2010提高(06)

    [题目描述:] Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命令只有两 ...

随机推荐

  1. (第十周)评论Beta发布

    本人所在组:奋斗吧兄弟 按课上展示的顺序对每组进行点评: 1.  飞天小女警 项目:礼物挑选工具 相对于alpha发布时有了很大的进步.项目的界面很漂亮,这个项目的想法很新颖,我很喜欢.礼物的挑选给出 ...

  2. Notes of Daily Scrum Meeting(11.19)

    Notes of Daily Scrum Meeting(11.19) 现在工程项目进入尾声了,我们的项目中还有一些问题需要解决,调试修改起来进度比较慢,所以昨天就没有贴出项目 进度,今天的团队工作总 ...

  3. Scrum Meeting 10.27

    1.会议内容: 姓名 今日任务 明日任务 预估时间(h) 徐越 配置SQLserver 学习本地和服务器之间的通信 4 卞忠昊 找上届代码的bug 学习安卓布局(layout)的有关知识,研究上届学长 ...

  4. 实验三:跟踪分析Linux内核的启动过程

    实验三:跟踪分析Linux内核的启动过程 学号:20135114 姓名:王朝宪 注: 原创作品转载请注明出处   <Linux内核分析>MOOC课程http://mooc.study.16 ...

  5. git 提交本地文件,删除文件夹,修改文件等

    1. 下载git工具包 链接: https://git-scm.com/download/win 2. 右键打开git bash 登陆到自己的github账户 $ git config --globa ...

  6. 关于JoptionPane提示框

    import java.util.*; import javax.swing.JOptionPane; import javax.swing.UIManager; public class Main ...

  7. 简单Window下 Android Studio的安装

    (1)首先安装JDK 下载JDK 本人觉得官方网站下JDK比较慢,可以直接百度JDK,(如果是64位 百度搜索记得+64位)

  8. excel表格如何限制单元格输入内容

    一天一天实在太快,周六了~~~ 测试任务不太紧的时候就可以着手开始整理本月的测试项目,选择的是excel,清晰明了. 原来excel的功能远比我们想象的强大与好用,今天先介绍如何限制单元格内容: 如下 ...

  9. [转帖] SQLNET.ORA的处理.

    被一个客户端连接远程数据库阻塞超时的问题困扰了好久,最后终于找到了答案  https://blog.csdn.net/herobox/article/details/16985097   Oracle ...

  10. Java多线程(三) —— 线程并发库之总体架构

    对java并发库一直觉得很神秘,决定好好研究一下. 参考文献: https://blog.csdn.net/hp910315/article/details/50963095 http://www.b ...