矩阵快速幂原来还可以这么用??

你们城里人还真会玩。

我们令$f[i][j][k]$表示总的钱数为i,当前使用的最大面值硬币的面值为$v_j$,最小为$v_k$的方案数量。

不难发现$f[i][j][k]=\sum f[a][j][l]\times f[b][l][k] $其中$l∈[k,j],a+b=i$。

很显然,这个转移过程不就是矩阵乘法的过程吗??

考虑到$\forall v_i>v_j$,有$gcd(v_i,v_j)=v_j$,则$f[v_i]$可以由$f[v_j]$通过矩阵乘法转移得到。

最后再简乘一下就得到答案了。

 #include<bits/stdc++.h>
#define M 51
#define L long long
#define MOD 998244353
using namespace std;
int n; L m,v[M]={};
struct matrix{
L a[M][M];
matrix(){memset(a,,sizeof(a));}
friend matrix operator *(matrix a,matrix b){
matrix c;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
for(int k=;k<=n;k++)
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%MOD;
return c;
}
friend matrix operator ^(matrix a,L b){
matrix ans=a; b--;
while(b){
if(b&) ans=ans*a;
a=a*a; b>>=;
}
return ans;
}
void danwei(){
for(int i=;i<=n;i++) a[i][i]=;
}
}ans,a[M];
int main(){
scanf("%d%lld",&n,&m);
for(int i=;i<=n;i++) scanf("%lld",v+i);
sort(v+,v+n+);
a[].a[][]=;
for(int i=;i<=n;i++){
L t=v[i]/v[i-];
a[i]=a[i-]^t;
for(int j=;j<=i;j++) a[i].a[i][j]++;
}
ans.danwei();
for(int i=n;i;i--)
if(m/v[i]){
L t=m/v[i];
ans=ans*(a[i]^t);
m=m%v[i];
}
L hhh=;
for(int i=;i<=n;i++) hhh=(hhh+ans.a[i][])%MOD;
printf("%lld\n",hhh);
}

【2018北京集训十二】 coin 矩阵快速幂的更多相关文章

  1. nyoj_148_fibonacci数列(二)_矩阵快速幂

    fibonacci数列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 In the Fibonacci integer sequence, F0 = 0, F ...

  2. HDU——1005Number Sequence(模版题 二维矩阵快速幂+操作符重载)

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. fibonacci数列(二)_矩阵快速幂

    描述 In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For exampl ...

  4. 2018.09.25 poj3070 Fibonacci(矩阵快速幂)

    传送门 矩阵快速幂板题,写一道来练练手. 这一次在poj做题总算没忘了改万能库. 代码: #include<iostream> #include<cstdio> #define ...

  5. CodeChef February Challenge 2018 Broken Clock (三角函数推导 + 矩阵快速幂)

    题目链接  Broken Clock   中文题面链接 令$cos(xα) = f(x)$ 根据三角函数变换公式有 $f(x) = \frac{2d}{l} f(x-1) - f(x-2)$ 我们现在 ...

  6. hihoCoder #1151 : 骨牌覆盖问题·二 (矩阵快速幂,DP)

    题意:给一个3*n的矩阵,要求用1*2的骨牌来填满,有多少种方案? 思路: 官网题解用的仍然是矩阵快速幂的方式.复杂度O(logn*83). 这样做需要构造一个23*23的矩阵,这个矩阵自乘n-1次, ...

  7. 集训第六周 矩阵快速幂 K题

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  8. (2016北京集训十二)【xsy1542】疯狂求导

    题解: 这题看起来很难...但是实际上并没有想象中的那么难 第一眼看上去不会求导公式怎么办?不要紧,题目背景非常良心的给出了题目中的导数计算公式 求完导合并同类项很恶心怎么办?不要紧,样例解释说明了不 ...

  9. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 矩阵快速幂

    Bob has a not even coin, every time he tosses the coin, the probability that the coin's front face u ...

随机推荐

  1. 针对程序员的podcast

    身为程序员们,必须要懂得合理的利用琐碎时间来提炼自身,或许上下班途中或骑行或徒步或...时,以下这些Podcasts对你有些许作用: The Hanselminutes podcast by Scot ...

  2. centos6.8下redis的安装和配置

    centos6.8下redis的安装和配置 下载.安装 在redis官网可以获取到最新版本的redis 进入/usr/local/目录,执行如下命令 wget http://download.redi ...

  3. 2018.09.25 bzoj3572: [Hnoi2014]世界树(虚树+树形dp)

    传送门 虚树入门题? 好难啊. 在学习别人的写法之后终于过了. 这道题dp方程很好想. 主要是不好写. 简要说说思路吧. 显然最优值只能够从子树和父亲转移过来. 于是我们先dfs一遍用儿子更新父亲,然 ...

  4. Nginx upstream的5种权重分配方式(转)

    出处:http://www.cnblogs.com/funsion/p/4003499.html?utm_source=tuicool 1.轮询(默认) 每个请求按时间顺序逐一分配到不同的后端服务器, ...

  5. Web Service测试工具小汇

    1..NET WebService Studio 这款工具出自微软内部,最大的优点是可视化很好,不用去看那些XML文件,WebService的基础内容就有XML,但是测试中Case过多,每次测试结果都 ...

  6. Dbutils学习(介绍和入门)

    一:Dbutils是什么?(当我们很难理解一个东西的官方解释的时候,就让我们记住它的作用)      Dbutils:主要是封装了JDBC的代码,简化dao层的操作.      作用:帮助java程序 ...

  7. VS 附加不上w3wp.exe

    今天调用VS 附加不上w3wp.exe,其他的站点都能附加上,就有一个站附加不上,找了各种可能都没有解决,结果发现是版本被编译成release了,原来的配置都是debug的,不知道被谁给改成relea ...

  8. OpenGL模型视图变换、投影变换、视口变换的理解

    OpenGL中不设置模型,投影,视口,所绘制的几何图形的坐标只能是-1到1(X轴向右,Y轴向上,Z轴垂直屏幕向外). 产生目标场景的过程类似于用照相机进行拍照: (1)把照相机固定在三角架上,并让他对 ...

  9. Eclipse的使用技巧

    Eclipse有强大的编辑功能, 工欲善其事,必先利其器, 掌握Eclipse快捷键,可以大大提高工作效率. 小坦克我花了一整天时间, 精选了一些常用的快捷键操作,并且精心录制了动画, 让你一看就会. ...

  10. 基于Maven的S2SH(Struts2+Spring+Hibernate)框架搭建

    1. 前言 基于Maven的开发方式开发项目已经成为主流.Maven能很好的对项目的层次及依赖关系进行管理.方便的解决大型项目中复杂的依赖关系.S2SH(Struts2+Spring+Hibernat ...