题解

我们设\(f(i,j)\)是\((i,j)\)这个点期望被经过多少次

我们可以列出方程组来消元,由于终点只会被经过0次或者1次,期望就是概率

对于起点的话我们期望经过次数多加一个1

复杂度\(O(n^6)\)

代码

#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
//#define ivorysi
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define mo 974711
#define RG register
#define MAXN 200005
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) putchar('-'),x = -x;
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int g[25][25],ind[25];
int N,M,a,b;
db P[25],f[505][505],ans[505];
int get_id(int x,int y) {
return (x - 1) * N + y;
}
void Guass() {
int T = N * N;
for(int i = 1 ; i <= T ; ++i) {
int l = i;
for(int j = i ; j <= T ; ++j) if(fabs(f[l][i]) < fabs(f[j][i])) l = j;
if(l != i) {
for(int j = 1 ; j <= T ; ++j) swap(f[l][j],f[i][j]);
}
for(int j = i + 1 ; j <= T ; ++j) {
db t = f[j][i] / f[i][i];
for(int k = i ; k <= T + 1; ++k) {
f[j][k] -= t * f[i][k];
}
}
}
for(int i = T ; i >= 1 ; --i) {
for(int j = i + 1 ; j <= T ; ++j) {
f[i][T + 1] -= f[i][j] * ans[j];
}
ans[i] = f[i][T + 1] / f[i][i];
}
}
void Solve() {
read(N);read(M);read(a);read(b);
int u,v;
for(int i = 1 ; i <= M ; ++i) {
read(u);read(v);
ind[u]++;ind[v]++;
g[u][v] = g[v][u] = 1;
}
for(int i = 1 ; i <= N ; ++i) scanf("%lf",&P[i]);
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
int t = get_id(i,j);
if(i == a && j == b) f[t][N * N + 1] += 1.0;
f[t][t] += 1.0;
for(int k = 1 ; k <= N ; ++k) {
if(k != i && !g[i][k]) continue;
for(int h = 1 ; h <= N ; ++h) {
if(j != h && !g[j][h]) continue;
if(k == h) continue;
db tmp = 1.0;
if(i == k) tmp *= P[i];
else tmp *= (1 - P[k]) / ind[k];
if(j == h) tmp *= P[h];
else tmp *= (1 - P[h]) / ind[h];
f[t][get_id(k,h)] += -tmp;
}
}
}
}
Guass();
for(int i = 1 ; i <= N ; ++i) {
printf("%.8lf ",ans[get_id(i,i)]);
}
enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}

【Codeforces】113 D. Museum的更多相关文章

  1. 【Codeforces】Round #491 (Div. 2) 总结

    [Codeforces]Round #491 (Div. 2) 总结 这次尴尬了,D题fst,E没有做出来.... 不过还好,rating只掉了30,总体来说比较不稳,下次加油 A:If at fir ...

  2. 【Codeforces】Round #488 (Div. 2) 总结

    [Codeforces]Round #488 (Div. 2) 总结 比较僵硬的一场,还是手速不够,但是作为正式成为竞赛生的第一场比赛还是比较圆满的,起码没有FST,A掉ABCD,总排82,怒涨rat ...

  3. 【LeetCode】113. Path Sum II 解题报告(Python)

    [LeetCode]113. Path Sum II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fu ...

  4. 【CodeForces】601 D. Acyclic Organic Compounds

    [题目]D. Acyclic Organic Compounds [题意]给定一棵带点权树,每个点有一个字符,定义一个结点的字符串数为往下延伸能得到的不重复字符串数,求min(点权+字符串数),n&l ...

  5. 【Codeforces】849D. Rooter's Song

    [算法]模拟 [题意]http://codeforces.com/contest/849/problem/D 给定n个点从x轴或y轴的位置p时间t出发,相遇后按对方路径走,问每个数字撞到墙的位置.(还 ...

  6. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  7. 【CodeForces】925 C.Big Secret 异或

    [题目]C.Big Secret [题意]给定数组b,求重排列b数组使其前缀异或和数组a单调递增.\(n \leq 10^5,1 \leq b_i \leq 2^{60}\). [算法]异或 为了拆位 ...

  8. 【CodeForces】700 D. Huffman Coding on Segment 哈夫曼树+莫队+分块

    [题目]D. Huffman Coding on Segment [题意]给定n个数字,m次询问区间[l,r]的数字的哈夫曼编码总长.1<=n,m,ai<=10^5. [算法]哈夫曼树+莫 ...

  9. 【CodeForces】906 D. Power Tower 扩展欧拉定理

    [题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...

随机推荐

  1. python 中__getitem__ 和 __iter__ 的区别

    # -*- coding: utf-8 -*- class Library(object): def __init__(self): self.books = { 'title' : 'a', 'ti ...

  2. python---方法解析顺序MRO(Method Resolution Order)<以及解决类中super方法>

    MRO了解: 对于支持继承的编程语言来说,其方法(属性)可能定义在当前类,也可能来自于基类,所以在方法调用时就需要对当前类和基类进行搜索以确定方法所在的位置.而搜索的顺序就是所谓的「方法解析顺序」(M ...

  3. Ubuntu 搭建svn服务器 ,以及常见错误解决方案

    一.安装命令: 1)以root身份登录.执行:sudo su -命令 2)执行安装命令:apt-get install subversion   二.创建项目目录 1)mkdir  /home/svn ...

  4. Shell记录-Shell脚本基础(六)

    watch是一个非常实用的命令,基本所有的Linux发行版都带有这个小工具,如同名字一样,watch可以帮你监测一个命令的运行结果,省得你一遍遍的手动运行. 1.命令格式 watch[参数][命令] ...

  5. Python入门系列教程(五)函数

    全局变量 修改全局变量 a=100 def test(): global a a=200 print a 多个返回值 缺省参数 def test3(a,b=1): print a,b test3(a) ...

  6. WPF控件收集

    1.Extended WPF Toolkit 2.Fluent Ribbon Control Suite 3.WPF Ribbon Control 4.Telerik RadControls for ...

  7. Chrome截长屏

    本文地址:https://www.cnblogs.com/veinyin/p/9257833.html   Chrome截取长屏一直是一个痛点,之前尝试过第三方截图工具,但是不是收费就是不怎么好用,今 ...

  8. getElementById()方法取值

    举例子: javascript: var time = document.getElementById('jidu').value; //指定时间 var taskclass = document.g ...

  9. exec操作文件描述符

    exec命令可以用来替代当前shell:换句话说,并没有启动子shell.使用这一命令时任何环境都将被清除,并重新启动一个shell. 它的一半形式为: exec command 其中,command ...

  10. mysql关于“异步复制”“同步复制”“半同步复制”“无损复制”的概念与区别

    异步复制:主把事务写到binlog日志并不管从是否接收或者什么时候接收,commit之后,不会与从发生ack之类的交互. 同步复制:当主提交一个事务,在主向前端返回一个commit成功的指令前,必须保 ...