平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树

(a)和(b)都是排序二叉树,但是查找(b)的93节点就需要查找6次,查找(a)的93节点就需要查找3次,所以(b)的效率不高。

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树。它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树的深度只差的绝对值不超过1。若将二叉树上节点的平衡因子BF(Balance Factor)定义为该节点的左子树的深度减去它右子树的深度,则平衡二叉树上所有节点的平衡因子只可能是-1,0,1。只要二叉树上有一个节点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。

上图(a)是平衡二叉树,(b)不是平衡二叉树,因为有的节点的平衡因子大于1了。

插入节点的大致思路:

  • 首先找到插入节点的位置,插入节点
  • 插入节点后,调整相关节点的平衡因子
  • 调整平衡因子后,如果发现树不平衡了,就要进行节点的调整(单左旋转,或单右旋转,或双旋转(先左后又,或者先右后左)。

avl_tree.h

#ifndef __AVLTREE__
#define __AVLTREE__ #include<stdio.h>
#include<malloc.h>
#include<assert.h>
#include "nodestack.h" #define Type int
#define FALSE 0
#define TRUE 1
#define BOOL int typedef struct AVLNode{
Type data;
struct AVLNode* left;
struct AVLNode* right;
int bf;//平衡因子
}AVLNode; typedef struct AVLTree{
struct AVLNode* root;
}AVLTree; void init_avl_tree(AVLTree* avl);
//插入节点
BOOL insert_avl(AVLTree* avl, Type t); #endif

avl_tree.c

#include "avl_tree.h"

void init_avl_tree(AVLTree* avl){
avl->root = NULL;
}
AVLNode* malNode(Type x){
AVLNode* t = (AVLNode*)malloc(sizeof(AVLNode));
assert(NULL != t);
t->data = x;
t->left = NULL;
t->right = NULL;
t->bf = 0;
return t;
}
//右旋转
void rotateR(AVLNode** t){
AVLNode* subR = *t;
*t = (*t)->left;
subR->left = (*t)->right;
(*t)->right = subR;
(*t)->bf = 0;
subR->bf = 0; }
//左旋转
void rotateL(AVLNode** t){
AVLNode* subL = *t;
*t = (*t)->right;
subL->right = (*t)->left;
(*t)->left = subL;
(*t)->bf = 0;
subL->bf = 0; }
//左右旋转
void rotateLR(AVLNode** t){
AVLNode* subR = *t;
AVLNode* subL = subR->left;
*t = subL->right; subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf <= 0){///??
subL->bf = 0;
}
else{
subL->bf = -1;
} subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf == -1){
subR->bf = 1;//???
}
else{
subR->bf = 0;//???
} (*t)->bf = 0;
}
//右左旋转
void rotateRL(AVLNode** t){
AVLNode* subL = *t;
AVLNode* subR = subL->right;
*t = subR->left; subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf >= 0){
subR->bf = 0;
}
else{
subR->bf = 1;
} subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf == 1){
subL->bf = -1;
}
else{
subL->bf = 0;
} (*t)->bf = 0;
}
//插入树的节点
BOOL insert_avl_node(AVLNode** t, Type x){
AVLNode* p = *t;
AVLNode* parent = NULL; nodestack st;
init(&st); while(p != NULL){
if(x == p->data)
return FALSE;
parent = p;
push(&st, parent);
if(x < p->data)
p = p->left;
else
p = p->right;
}
p = malNode(x);
//插入节点为root节点
if(parent == NULL){
*t = p;
return TRUE;
}
//插入节点不是root节点
if(x < parent->data)
parent->left = p;
else
parent->right = p; //调整BF
while(length(&st) != 0){
parent = getTop(&st);
pop(&st);
if(parent->left == p){
parent->bf--;
}
else{
parent->bf++;
} if(parent->bf == 0){
break;
}
if(parent->bf == 1 || parent->bf == -1){
p = parent;
}
else{
//旋转树,让树变成平衡树
int flag = (parent->bf < 0) ? -1 : 1;
//符号相同,说明是一条直线,不是折线,所以单旋转
if(p->bf == flag){
//因为是撇/,所以右旋转
if(flag == -1){
rotateR(&parent);
}
//因为是捺\,所以左旋转
else{
rotateL(&parent);
}
}
//符号不同,说明是折线,所以双旋转
else{
//折线的角指向右>
if(flag == 1){
rotateRL(&parent);
}
//折线的角指向左<
else{
rotateLR(&parent);
}
}
break;
}
} if(length(&st) == 0){
*t = parent;
}
else{
AVLNode* q = getTop(&st);
if(q->data > parent->data){
q->left = parent;
}
else{
q->right = parent;
}
} clear(&st);
return TRUE;
}
//插入节点
BOOL insert_avl(AVLTree* avl, Type t){
return insert_avl_node(&avl->root, t);
}

avl_treemain.c

#include "avl_tree.h"

int main(){
AVLTree avl;
init_avl_tree(&avl); //Type ar[] = {13,24,37,90,53};
//Type ar[] = {30,20,10};
//Type ar[] = {30,20,40,10,25,5,22,28,21};
//Type ar[] = {30,20,10};
//Type ar[] = {50,40,60,10,45,70,5,30,20,12};
Type ar[] = {30,20,50,10,40,70,60,80,55}; int n = sizeof(ar) / sizeof(Type);
for(int i = 0; i < n; ++i){
insert_avl(&avl, ar[i]);
}
return 0;
}

完整代码

编译方法:g++ -g nodestack.c avl_tree.c avl_treemain.c

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树的更多相关文章

  1. 数据结构与算法——平衡二叉树(AVL树)

    目录 二叉排序树存在的问题 基本介绍 单旋转(左旋转) 树高度计算 旋转 右旋转 双旋转 完整代码 二叉排序树存在的问题 一个数列 {1,2,3,4,5,6},创建一颗二叉排序树(BST) 创建完成的 ...

  2. C++版 - 剑指offer 面试题39:判断平衡二叉树(LeetCode 110. Balanced Binary Tree) 题解

    剑指offer 面试题39:判断平衡二叉树 提交网址:  http://www.nowcoder.com/practice/8b3b95850edb4115918ecebdf1b4d222?tpId= ...

  3. [CareerCup] 4.1 Balanced Binary Tree 平衡二叉树

    4.1 Implement a function to check if a binary tree is balanced. For the purposes of this question, a ...

  4. 平衡二叉树(Balanced Binary Tree)

    平衡二叉树(Balanced Binary Tree)/AVL树:

  5. [Algorithm] Find Max Items and Max Height of a Completely Balanced Binary Tree

    A balanced binary tree is something that is used very commonly in analysis of computer science algor ...

  6. LeetCode 110. 平衡二叉树(Balanced Binary Tree) 15

    110. 平衡二叉树 110. Balanced Binary Tree 题目描述 给定一个二叉树,判断它是否是高度平衡的二叉树. 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点的左右两个子树 ...

  7. AVL平衡二叉树的各种问题(Balanced Binary Tree)

    AVL树或者是一棵空树,或者是具有以下性质的非空二叉搜索树: 1. 任一结点的左.右子树均为AVL树: 2.根结点左.右子树高度差的绝对值不超过1. 1.声明 #include<iostream ...

  8. [LeetCode] 110. Balanced Binary Tree ☆(二叉树是否平衡)

    Balanced Binary Tree [数据结构和算法]全面剖析树的各类遍历方法 描述 解析 递归分别判断每个节点的左右子树 该题是Easy的原因是该题可以很容易的想到时间复杂度为O(n^2)的方 ...

  9. 110. Balanced Binary Tree - LeetCode

    Question 110. Balanced Binary Tree Solution 题目大意:判断一个二叉树是不是平衡二叉树 思路:定义个boolean来记录每个子节点是否平衡 Java实现: p ...

随机推荐

  1. 【杂谈】tocmat是何时写回响应数据报的

    疑问的产生 这个疑问是我在写文件下载的时候产生的,我是用HttpServletResponse获取到Outputstream,然后利用OutputStream直接写数据的.当时我就想这个OutputS ...

  2. 教你一个vue小技巧,一般人我不说的

    本文由云+社区发表 1. 需求 最近的项目中,需要实现在vue框架中动态渲染带提示框的单选/多选文本框,具体的效果如下图所示,在输入框聚焦时,前端组件通过接收的kv参数渲染出选项,用户点击选项,可以将 ...

  3. DynamicProxy系列目录

    C# 1.基于Emit实现动态代理 2.Microsoft.CodeAnalysis动态生成代理类 3.castle dynamicproxy + AutoFac 4.DispatchProxy .R ...

  4. 【Javascript系列】变量作用域

    问题描述 本篇文章主要讲解javascript变量及其作用域. 1   内容区 在js中,变量大致可分为全局变量(全局作用域)和局部变量(局部作用域): 用关键字var定义变量(全局变量,可以省略va ...

  5. Tomcat(三):tomcat处理连接的详细过程

    Tomcat系列文章:http://www.cnblogs.com/f-ck-need-u/p/7576137.html tomcat可以处理静态资源的请求,也可以通过servlet处理动态资源的请求 ...

  6. 关于VUE首屏加载过长的优化,VUE项目开发优化

    1. 按需引入UI组件 当下市面上流行的UI组件基本都支持按需加载,本文以Element UI为例: (1)     新建一个elementUI.js文件 (2)     访问地址找到按需引入方式的说 ...

  7. Linux命令-用户及权限管理

    一.权限管理linux系统中对文件权限的描述机制: u g od r w x r w x r - x (r读,w写,x执行)文件 所有者 所属组 其他人可以表示为二进制: 111 111 101也可以 ...

  8. HTTP状态码分类

    前言: 我们经常使用浏览器发出http请求,那么对于请求返回的状态,对于开发人员来讲,我们必须要明白其所代表的含义,如: 常见状态吗:400(请求无效),401(需要权限),500(服务器错误), 今 ...

  9. Java中枚举的使用

    Java中枚举其实就是静态常量,今天发现枚举里面其实还能加方法,学习了下, 代码如下: package org.pine.test; import java.util.HashMap; import ...

  10. css 表单标签两端对齐

    来自:http://demo.doyoe.com/css3/justify/justify-form.htm  侵删 <!DOCTYPE html> <html lang=" ...