平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树

(a)和(b)都是排序二叉树,但是查找(b)的93节点就需要查找6次,查找(a)的93节点就需要查找3次,所以(b)的效率不高。

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树。它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树的深度只差的绝对值不超过1。若将二叉树上节点的平衡因子BF(Balance Factor)定义为该节点的左子树的深度减去它右子树的深度,则平衡二叉树上所有节点的平衡因子只可能是-1,0,1。只要二叉树上有一个节点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。

上图(a)是平衡二叉树,(b)不是平衡二叉树,因为有的节点的平衡因子大于1了。

插入节点的大致思路:

  • 首先找到插入节点的位置,插入节点
  • 插入节点后,调整相关节点的平衡因子
  • 调整平衡因子后,如果发现树不平衡了,就要进行节点的调整(单左旋转,或单右旋转,或双旋转(先左后又,或者先右后左)。

avl_tree.h

#ifndef __AVLTREE__
#define __AVLTREE__ #include<stdio.h>
#include<malloc.h>
#include<assert.h>
#include "nodestack.h" #define Type int
#define FALSE 0
#define TRUE 1
#define BOOL int typedef struct AVLNode{
Type data;
struct AVLNode* left;
struct AVLNode* right;
int bf;//平衡因子
}AVLNode; typedef struct AVLTree{
struct AVLNode* root;
}AVLTree; void init_avl_tree(AVLTree* avl);
//插入节点
BOOL insert_avl(AVLTree* avl, Type t); #endif

avl_tree.c

#include "avl_tree.h"

void init_avl_tree(AVLTree* avl){
avl->root = NULL;
}
AVLNode* malNode(Type x){
AVLNode* t = (AVLNode*)malloc(sizeof(AVLNode));
assert(NULL != t);
t->data = x;
t->left = NULL;
t->right = NULL;
t->bf = 0;
return t;
}
//右旋转
void rotateR(AVLNode** t){
AVLNode* subR = *t;
*t = (*t)->left;
subR->left = (*t)->right;
(*t)->right = subR;
(*t)->bf = 0;
subR->bf = 0; }
//左旋转
void rotateL(AVLNode** t){
AVLNode* subL = *t;
*t = (*t)->right;
subL->right = (*t)->left;
(*t)->left = subL;
(*t)->bf = 0;
subL->bf = 0; }
//左右旋转
void rotateLR(AVLNode** t){
AVLNode* subR = *t;
AVLNode* subL = subR->left;
*t = subL->right; subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf <= 0){///??
subL->bf = 0;
}
else{
subL->bf = -1;
} subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf == -1){
subR->bf = 1;//???
}
else{
subR->bf = 0;//???
} (*t)->bf = 0;
}
//右左旋转
void rotateRL(AVLNode** t){
AVLNode* subL = *t;
AVLNode* subR = subL->right;
*t = subR->left; subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf >= 0){
subR->bf = 0;
}
else{
subR->bf = 1;
} subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf == 1){
subL->bf = -1;
}
else{
subL->bf = 0;
} (*t)->bf = 0;
}
//插入树的节点
BOOL insert_avl_node(AVLNode** t, Type x){
AVLNode* p = *t;
AVLNode* parent = NULL; nodestack st;
init(&st); while(p != NULL){
if(x == p->data)
return FALSE;
parent = p;
push(&st, parent);
if(x < p->data)
p = p->left;
else
p = p->right;
}
p = malNode(x);
//插入节点为root节点
if(parent == NULL){
*t = p;
return TRUE;
}
//插入节点不是root节点
if(x < parent->data)
parent->left = p;
else
parent->right = p; //调整BF
while(length(&st) != 0){
parent = getTop(&st);
pop(&st);
if(parent->left == p){
parent->bf--;
}
else{
parent->bf++;
} if(parent->bf == 0){
break;
}
if(parent->bf == 1 || parent->bf == -1){
p = parent;
}
else{
//旋转树,让树变成平衡树
int flag = (parent->bf < 0) ? -1 : 1;
//符号相同,说明是一条直线,不是折线,所以单旋转
if(p->bf == flag){
//因为是撇/,所以右旋转
if(flag == -1){
rotateR(&parent);
}
//因为是捺\,所以左旋转
else{
rotateL(&parent);
}
}
//符号不同,说明是折线,所以双旋转
else{
//折线的角指向右>
if(flag == 1){
rotateRL(&parent);
}
//折线的角指向左<
else{
rotateLR(&parent);
}
}
break;
}
} if(length(&st) == 0){
*t = parent;
}
else{
AVLNode* q = getTop(&st);
if(q->data > parent->data){
q->left = parent;
}
else{
q->right = parent;
}
} clear(&st);
return TRUE;
}
//插入节点
BOOL insert_avl(AVLTree* avl, Type t){
return insert_avl_node(&avl->root, t);
}

avl_treemain.c

#include "avl_tree.h"

int main(){
AVLTree avl;
init_avl_tree(&avl); //Type ar[] = {13,24,37,90,53};
//Type ar[] = {30,20,10};
//Type ar[] = {30,20,40,10,25,5,22,28,21};
//Type ar[] = {30,20,10};
//Type ar[] = {50,40,60,10,45,70,5,30,20,12};
Type ar[] = {30,20,50,10,40,70,60,80,55}; int n = sizeof(ar) / sizeof(Type);
for(int i = 0; i < n; ++i){
insert_avl(&avl, ar[i]);
}
return 0;
}

完整代码

编译方法:g++ -g nodestack.c avl_tree.c avl_treemain.c

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树的更多相关文章

  1. 数据结构与算法——平衡二叉树(AVL树)

    目录 二叉排序树存在的问题 基本介绍 单旋转(左旋转) 树高度计算 旋转 右旋转 双旋转 完整代码 二叉排序树存在的问题 一个数列 {1,2,3,4,5,6},创建一颗二叉排序树(BST) 创建完成的 ...

  2. C++版 - 剑指offer 面试题39:判断平衡二叉树(LeetCode 110. Balanced Binary Tree) 题解

    剑指offer 面试题39:判断平衡二叉树 提交网址:  http://www.nowcoder.com/practice/8b3b95850edb4115918ecebdf1b4d222?tpId= ...

  3. [CareerCup] 4.1 Balanced Binary Tree 平衡二叉树

    4.1 Implement a function to check if a binary tree is balanced. For the purposes of this question, a ...

  4. 平衡二叉树(Balanced Binary Tree)

    平衡二叉树(Balanced Binary Tree)/AVL树:

  5. [Algorithm] Find Max Items and Max Height of a Completely Balanced Binary Tree

    A balanced binary tree is something that is used very commonly in analysis of computer science algor ...

  6. LeetCode 110. 平衡二叉树(Balanced Binary Tree) 15

    110. 平衡二叉树 110. Balanced Binary Tree 题目描述 给定一个二叉树,判断它是否是高度平衡的二叉树. 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点的左右两个子树 ...

  7. AVL平衡二叉树的各种问题(Balanced Binary Tree)

    AVL树或者是一棵空树,或者是具有以下性质的非空二叉搜索树: 1. 任一结点的左.右子树均为AVL树: 2.根结点左.右子树高度差的绝对值不超过1. 1.声明 #include<iostream ...

  8. [LeetCode] 110. Balanced Binary Tree ☆(二叉树是否平衡)

    Balanced Binary Tree [数据结构和算法]全面剖析树的各类遍历方法 描述 解析 递归分别判断每个节点的左右子树 该题是Easy的原因是该题可以很容易的想到时间复杂度为O(n^2)的方 ...

  9. 110. Balanced Binary Tree - LeetCode

    Question 110. Balanced Binary Tree Solution 题目大意:判断一个二叉树是不是平衡二叉树 思路:定义个boolean来记录每个子节点是否平衡 Java实现: p ...

随机推荐

  1. php-fpm无法使用系统环境变量的解决方法

    为了防止任意环境变量到达php-fpm进程,默认默认php-fpm是会清空系统环境变量的, 解决办法 修改php-fpm配置的clear_env = no (默认是yes)

  2. Mysql加锁过程详解(7)-初步理解MySQL的gap锁

    Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...

  3. 2018 ACM-ICPC Asia Beijing Regional Contest (部分题解)

    摘要 本文主要给出了2018 ACM-ICPC Asia Beijing Regional Contest的部分题解,意即熟悉区域赛题型,保持比赛感觉. Jin Yong’s Wukong Ranki ...

  4. 【Go】深入剖析slice和array

    文章来源:https://blog.thinkeridea.com/201901/go/shen_ru_pou_xi_slice_he_array.html array 和 slice 看似相似,却有 ...

  5. Python with/as和contextlib上下文管理使用说明

    with/as 使用open打开过文件的对with/as都已经非常熟悉,其实with/as是对try/finally的一种替代方案. 当某个对象支持一种称为"环境管理协议"的协议时 ...

  6. Go Web:数据存储(2)——CSV文件

    存储到CSV文件中 1.内存存储 2.CSV文件存储 3.gob序列化存储 本文接上一篇:内存存储. 关于CSV文件的说明,见csv文件格式 当数据存储到了内存中,可以在需要的时候持久化保存到磁盘文件 ...

  7. pdf.js插件使用记录,在线打开pdf

    天记录一个js库:pdf.js.主要是实现在线打开pdf功能.因为项目需求需要能在线查看pdf文档,所以就研究了一下这个控件. 有些人很好奇,在线打开pdf文档浏览器不是支持吗.是的你说的都是现代浏览 ...

  8. webpack 笔记

    webpack.config.json entry:入口,可有多个 devtool:'inline-source-map'      source map,遇到错误时,追踪到原文件,而不是编译后的文件 ...

  9. 【Spring】22、Spring缓存注解@Cache使用

    缓存注解有以下三个: @Cacheable      @CacheEvict     @CachePut @Cacheable(value=”accountCache”),这个注释的意思是,当调用这个 ...

  10. laravel常见异常解决

    requested URL not found http://stackoverflow.com/questions/21458080/the-requested-url-projectname-us ...