原文链接http://www.cnblogs.com/zhouzhendong/p/8697258.html

题目传送门 - BZOJ3675

题意

  对于一个非负整数序列,小H需要重复k次以下的步骤:

  1.选择一个长度超过1的序列

  2.从任意位置将序列分割成两个非空的新序列。

  每次,小H将会得到分数。分数为两个新序列中元素和的乘积。请选择一种最佳的分割方式,使得k轮之后,使总得分最大。输出总得分。

  $n\leq 10^5,k\leq min(n-1,200)$

题解

  真是一道不错的题目。

  首先,我们要发掘一个性质。

对于一个最终的划分方案,以各种不同顺序划分,所得到的得分总是相同。

  设两个区间和做乘积并累加到答案里的过程为这两个区间对答案做了一次贡献。

  那么我们要证明划分完毕之后,任意两个连续区间都互相做了且仅互相做了一次贡献。

  考虑每次划分大区间的时候,划分出来的左边和右边每一个区间都做了贡献,而显然之后在左边的就不会和右边做贡献了,于是任意两个连续区间最多做一次贡献。

  考虑到对于子区间,我们不断进行子区间的左右子区间互相贡献,直到划分为1为止。

  可以感性理解一下,每一个最终区间一定会和其他所有最终区间贡献。

  或者也可以用一个更简易的证明:

  |s1|s2|s3|

  考虑以上的3段区间,区间和分别为s1,s2,s3,你可以自己试着先割s1和s2以及先割s2和s3,然后你会发现最后算出来的结果是相同的。

  所以我们可以从左到右分割。

  于是我们可以写出DP方程。

  $dp_{r,i}$表示分割了$r$次,分割到了$i$这个位置。

  设$sum_i=\sum_{j=1}^i a_j$。

  $$dp_{r,i}=max\{dp_{r-1,j}+sum_j(sum_i-sum_j)\}\ \ \ (0\leq j<i)$$

  显然可以斜率优化。

  稍微推导一下:

  $$dp_{r-1,j}+sum_j(sum_i-sum_j)\\=dp_{r-1,j}-sum_j^2+sum_jsum_i$$

  令

  $$x_i=sum_i$$

  $$y_i=dp_{r-1,i}-sum_i^2$$

  则原式=

  $$y_j+sum_ix_j$$

  假设$j>k$且从$j$转移不劣于$k$,则:

  $$y_j+sum_ix_jy_k+sum_ix_k$$

  化简得:

  $$\frac{y_j-y_k}{x_j-x_k}\geq -sum_i$$

  然后献上又一波斜率优化DP套路:

  注意由于开始限制了$j>k$所以$x_j-x_k>0$,所以最后两边同时相除不等式仍然成立。

  设

  $$g_{i,j}=\frac{y_i-y_j}{x_i-x_j}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (i>j)$$

  则上式可以表示为$g_{j,k}\geq -sum_i$

  我们来发掘以下$g_{j,k}$的性质。

  1. 当$g_{j,k}\geq -sum_i$时,由于随着$i$变大,$-sum_i$变小,所以显然从$k$转移是永远不会比$j$好的,所以我们可以把$k$扔掉。

  2. 当$g_{i,j}\geq g_{j,k}$时,从$i$或者$k$转移至少有一个不比$j$差,所以可以把$j$扔掉。为什么??

    若$g_{i,j}\geq -sum_i$,显然$j$要被扔掉,根据第一个性质。

    若$g_{i,j}<-sum_i$,则$g_{j,k}<-sum_i$,那么显然$j$比$k$差,也得被扔掉。

  于是我们可以用一个单调队列来维护斜率的单调性。

  具体的:

  当情况1发生的时候让队首出队。

  在进队的时候,如果发生情况2,那么先让队尾出队,然后再进队。

  为了避免精度问题,以及分母为0的问题,我们可以把$x_i-x_j$乘上来,用乘积式来判断大小。

  但是本题空间限制较为紧。

  所以要滚动。

  注意初始化还没有进行任何一次分割时候的$x_i,y_i$,我一开始还以为都是0,调了很久。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100005;
int n,R,q[N],head,tail;
LL sum[N],x[2][N],y[2][N],dp[2][N];
int main(){
scanf("%d%d",&n,&R);
for (int i=1;i<=n;i++)
scanf("%lld",&sum[i]),sum[i]+=sum[i-1];
int T0=1,T1=0;
for (int i=1;i<=n;i++)
x[T1][i]=sum[i],y[T1][i]=-sum[i]*sum[i];
for (int r=1;r<=R;r++){
T0^=1,T1^=1;
head=1,tail=0;
q[++tail]=0;
for (int i=1;i<=n;i++){
int j=q[head+1],k=q[head];
while (tail-head>0&&y[T0][j]-y[T0][k]>=(x[T0][j]-x[T0][k])*(-sum[i]))
head++,j=q[head+1],k=q[head];
j=k;
dp[T1][i]=dp[T0][j]+sum[j]*(sum[i]-sum[j]);
x[T1][i]=sum[i];
y[T1][i]=dp[T1][i]-sum[i]*sum[i];
j=q[tail],k=q[tail-1];
while (tail-head>0&&(y[T0][i]-y[T0][j])*(x[T0][j]-x[T0][k])>=(y[T0][j]-y[T0][k])*(x[T0][i]-x[T0][j]))
tail--,j=q[tail],k=q[tail-1];
q[++tail]=i;
}
}
printf("%lld",dp[T1][n]);
return 0;
}

  

BZOJ3675 [Apio2014]序列分割 动态规划 斜率优化的更多相关文章

  1. [Bzoj3675][Apio2014]序列分割(斜率优化)

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4021  Solved: 1569[Submit][Stat ...

  2. BZOJ3675 [Apio2014]序列分割 【斜率优化dp】

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MB Submit: 3366  Solved: 1355 [Submit][St ...

  3. 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)

    传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...

  4. BZOJ3675 Apio2014 序列分割 【斜率优化】

    Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...

  5. BZOJ 3675: [Apio2014]序列分割 动态规划 + 斜率优化 + 卡精度

    Code: #include<bits/stdc++.h> #define N 100006 #define M 205 #define ll long long #define setI ...

  6. 【BZOJ3675】序列分割(斜率优化,动态规划)

    [BZOJ3675]序列分割(斜率优化,动态规划) 题面 Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得 ...

  7. BZOJ_3675_[Apio2014]序列分割_斜率优化

    BZOJ_3675_[Apio2014]序列分割_斜率优化 Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了 ...

  8. 【BZOJ-3675】序列分割 DP + 斜率优化

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1420  Solved: 583[Submit][Statu ...

  9. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

随机推荐

  1. eclipse的工程中如何查找字符串

    ctrl + h 后弹出 tab选项, 你选择 file search 然后在下面输入要查找的字符串 workset 那里选择你要查找的项目 默认是全部项目进行查找

  2. Maven中央仓库地址整理

    最近做项目的时候,一直发现常用的oschina maven源一直都没有反应,后面发现原来oschina竟然关闭了maven源服务,后面经同事推荐了阿里云的maven源,这速度杠杠的 Maven 中央仓 ...

  3. oracle 报表带小计合计

    selectcase when (grouping(glbm)=1) then '合计' else DECODE(glbm,null,'',glbm) end glbm,case when (grou ...

  4. python-re模块和subprocess模块

    一.re模块 re中文为正则表达式,是字符串处理的常用工具,通常用来检索和替换符合某个模式的文本. 注:要搜索的模式和字符串都可以是unicode字符串(str)和8位字符串(bytes),但是不能将 ...

  5. python第一天,编写用户接口

    作业:编写登陆接口 输入用户名密码 认证成功后显示欢迎信息 输错三次后锁定 流程图: 代码 #!/usr/bin/env python #-*- coding:utf-8 -*- #created b ...

  6. 用Github发布静态页面

    一.以下几个简单的步骤   前提是得有 Github 账号啊!!! 在 Github 上新建一个仓库 New repository 填写仓库的名字,勾选 public 和 Initalize this ...

  7. vue this触发事件

    @click="aHref(index,$event)" aHref: function(url,event){ this.$router.push(url); $(event.c ...

  8. Vue.extend和Vue.component的联系与差异

    extend 是构造一个组件的语法器. 你给它参数 他给你一个组件 然后这个组件 你可以作用到Vue.component 这个全局注册方法里, 也可以在任意vue模板里使用apple组件 var ap ...

  9. Mycat节点扩缩容及高可用集群方案

    数据迁移与扩容实践: 工具目前从 mycat1.6,准备工作:1.mycat 所在环境安装 mysql 客户端程序. 2.mycat 的 lib 目录下添加 mysql 的 jdbc 驱动包. 3.对 ...

  10. PDF编辑方法,PDF如何去除数字签名

    有些人会在PDF文件中添加数字签名,但当PDF文件有数字签名的时候就无法对PDF文件进行编辑.添加等操作.这个时候就需要去除PDF文件中的数字签名了,要怎么做呢,就由我来跟大家分享一下小编我的去除数字 ...