原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1306.html

题目传送门 - 51Nod1306

题意

  有个N层的高楼和若干个棋子,所有的棋子都是一样的。棋子从楼的某层E扔到地上不会碎(0 <= E <= N),但从比这个楼层高的地方扔到地上都会碎。给出楼的高度N,以及棋子的数量M,你来找出这个E(0 <= E <= N),问最坏情况下需要实验多少次才能计算出准确的E(如果棋子摔碎了,就不能继续用这个棋子进行测试了)。

  1 <= N <= 10^18, 1 <= M <= 64

题解

  由于本题的原题目背景中的棋子是“鹰蛋”,而蛋比棋子说起来方便,所以下文中都用蛋描述。

  注意一下:一个蛋如果没有碎的话,还可以继续用!

  我一开始zz了,写个基于二分原理的假做法。wa了好久并下载了一组数据然后以为数据出锅然后百度一下才反应过来。

  我们考虑定义 $dp[i][j]$ 表示使用 $i$ 个蛋,抛 $j$ 次,能够确定的楼层总数。

  我们有 $dp[i][j]=dp[i][j-1]+dp[i-1][j-1]+1$ 。为什么是这个式子?我们分三种情况论述:

  1. 首先可以确定当前位置。 对于当前dp值的贡献:1

  2. 如果蛋没碎,那么显然这个位置以下的全部都不会碎。我们要用 $i$ 个蛋抛 $j-1$ 次来确定这个位置以上能确定的楼层数,即 $dp[i][j-1]$ 。

  3. 如果蛋碎了,那么显然这个位置以上的全部都会碎。我们要用剩余的 $i-1$ 个但抛 $j-1$ 次来确定这个位置以下能确定的楼层数,即 $dp[i-1][j-1]$ 。

  由于当 $m\leq 2$ 的时候,抛的次数可能非常多,我们把它特判掉。

  当 $m\leq 3$ 的时候,抛的次数很少了。

  我们可以 $dp$ 预处理出来,最后 lower_bound 以下就可以了。由于存在很多无用的状态(dp值过大),所以我们可以用 vector 来只存一下有用状态。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL INF=1000000000000000001LL,N=2e6;
int T;
LL n,m;
vector <LL> dp[70];
int main(){
scanf("%d",&T);
dp[0].clear();
for (int i=0;i<=N;i++)
dp[0].push_back(0);
for (int i=1;i<=64;i++){
dp[i].clear();
dp[i].push_back(0);
for (int j=1;j<=N&&dp[i][j-1]<INF;j++)
dp[i].push_back(min(dp[i][j-1]+dp[i-1][j-1]+1,INF));
}
while (T--){
scanf("%lld%lld",&n,&m);
if (m==1)
printf("%lld\n",n);
else if (m==2){
n<<=1;
LL ans=sqrt(n);
if (ans*(ans+1)<n)
ans++;
printf("%lld\n",ans);
}
else
printf("%d\n",lower_bound(dp[m].begin(),dp[m].end(),n)-dp[m].begin());
}
return 0;
}

  

51Nod1306 高楼和棋子 动态规划的更多相关文章

  1. 【BZOJ3294】放棋子(动态规划,容斥,组合数学)

    [BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...

  2. BZOJ3294 CQOI2011放棋子(动态规划)

    可以看做棋子放在某个位置后该种颜色就占领了那一行一列.行列间彼此没有区别. 于是可以设f[i][j][k]表示前k种棋子占领了i行j列的方案数.转移时枚举第k种棋子占领几行几列.注意行列间是有序的,要 ...

  3. [题解+总结]动态规划大合集II

    1.前言 大合集总共14道题,出自江哥之手(这就没什么好戏了),做得让人花枝乱颤.虽说大部分是NOIP难度,也有简单的几道题目,但是还是做的很辛苦,有几道题几乎没思路,下面一道道边看边分析一下. 2. ...

  4. hdu 1087 动态规划之最长上升子序列

    http://acm.hdu.edu.cn/showproblem.php?pid=1087 Online Judge Online Exercise Online Teaching Online C ...

  5. Google面试题之100层仍两个棋子

    一道Google面试题,题目如下:"有一个100层高的大厦,你手中有两个相同的玻璃围棋子.从这个大厦的某一层扔下围棋子就会碎,用你手中的这两个玻璃围棋子,找出一个最优的策略,来得知那个临界层 ...

  6. 动态规划——线性dp

    我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模 ...

  7. CJOJ 1087 【NOIP2010】乌龟棋 / Luogu 1541 乌龟棋(动态规划)

    CJOJ 1087 [NOIP2010]乌龟棋 / Luogu 1541 乌龟棋(动态规划) Description 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 乌龟棋的棋盘是一行N个格子,每个 ...

  8. [NOIP复习]第三章:动态规划

    一.背包问题 最基础的一类动规问题.相似之处在于给n个物品或无穷多物品或不同种类的物品,每种物品仅仅有一个或若干个,给一个背包装入这些物品,要求在不超出背包容量的范围内,使得获得的价值或占用体积尽可能 ...

  9. 【BZOJ1801】【AHOI2009】中国象棋(动态规划)

    [BZOJ1801][AHOI2009]中国象棋(动态规划) 题面 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个 ...

随机推荐

  1. 3-html 缩写-地址-文字方向-引用块-题注的格式

    HTML Quotation and Citation Elements Tag Description <abbr> Defines an abbreviation or acronym ...

  2. 使用AutoFac实现依赖注入

    1.基本使用 1.1新建MVC项目并安装Autofac 注意需要安装AutoFac和AutoFac.mvc5 Install-Package Autofac Install-Package Autof ...

  3. [javascript]XMLHttpRequest GET/SET HTTP头与改变HTTP METHOD示例代码

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. VBS计时器

    用VBS实现一个以分钟为单位的计时器: rem msgbox now 'now is the system para msgbox "Timer",,"CreatedBy ...

  5. redhat7.3安装python3 pip3

    首先系统自带的python是python2 我们需要安装一个python3(这里的所有源码包都可以在环境中准备好,这样没有网也可以进行安装) 安装python 1.安装环境 # yum -y inst ...

  6. 锤子科技"临死前"被"接盘" ,内部人士爆料已改签今日头条母公司

    就在昨天,据据锤子科技内部人士透露,部分锤子科技员工在昨天已经接到了相关的临时通知,要求改签劳动合同至今日头条的母公司——字节跳动.至于这是锤子科技真正再度复活还是借尸还魂都不重要,重要的是,作为忠实 ...

  7. python中的zip、map、reduce 、lambda、filter函数的使用

    飞机票 lambda函数 lambda只是一个表达式,函数体比def简单很多. lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去. lambda表达式是 ...

  8. Confluence 6 恢复一个站点问题解决

    如果你在导入的时候遇到了问题,检查下面的一些提示. 你的文件太大而不能上传?这个是非常常见的错误.出现的原因是备份文件不能在规定的时间内上传到服务器上.为了避免这个错误,放置你的导出文件到  < ...

  9. 【sqli-labs】Less7

    Less-7: 输出文件 sql导出文件语句 select * from table_test into outfile 'test.txt' 既然名字是输出文件,那肯定是和文件有关系. 首先,确保s ...

  10. 【linux】复制文件夹中文件,排除部分文件

    如下 cp `ls|grep -v -E '*json|out'|xargs` /home/data/ 用grep -v  表示排除, -E 表示正则 ls|grep -v -E '*json|out ...