【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)
题面
题解
显然交亵渎的次数是\(m+1\)。
那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1}\),中间再减掉几项直接暴力就行了。
所以只要考虑求这个东西。
比如说斯特林数?
\]
那么
\sum_{i=1}^n i^m&=\sum_{i=1}^n\sum_{j=0}^m {i\choose j}j!\begin{Bmatrix}m\\j\end{Bmatrix}\\
&=\sum_{j=0}^m j!\begin{Bmatrix}m\\j\end{Bmatrix}\sum_{i=1}^n{i\choose j}\\
&=\sum_{j=0}^m j!\begin{Bmatrix}m\\j\end{Bmatrix}{n+1\choose j+1}\\
&=\sum_{j=0}^m \begin{Bmatrix}m\\j\end{Bmatrix}\frac{(n+1)^{\underline {j+1}}}{j+1}
\end{aligned}\]
这样子可以做到\(O(m^2)\)。
斯特林数直接\(O(m^2)\)暴力预处理即可。
讲个笑话,这题我long long都没开就过了。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MOD 1000000007
#define ll long long
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int fpow(int a,int b){int s=1;while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}return s;}
int S[60][60];
int Calc(int n,int m)
{
int ret=0;n+=1;
for(int j=0;j<=m;++j)
{
int s=1;for(int k=0;k<=j;++k)s=1ll*s*(n-k+MOD)%MOD;
ret=(ret+1ll*S[m][j]*s%MOD*fpow(j+1,MOD-2))%MOD;
}
return ret;
}
ll n,a[55];int m;
int main()
{
S[0][0]=1;
for(int i=1;i<=55;++i)
for(int j=1;j<=i;++j)
S[i][j]=(1ll*S[i-1][j]*j+S[i-1][j-1])%MOD;
int T=read();
while(T--)
{
n=read();m=read();for(int i=1;i<=m;++i)a[i]=read();
sort(&a[1],&a[m+1]);int ans=0;
for(int i=0;i<=m;++i)
{
ans=(ans+Calc((n-a[i])%MOD,m+1))%MOD;
for(int j=i+1;j<=m;++j)ans=(ans+MOD-fpow((a[j]-a[i])%MOD,m+1))%MOD;
}
printf("%d\n",ans);
}
return 0;
}
【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)的更多相关文章
- [BZOJ5339] [TJOI2018]教科书般的亵渎
题目链接 BZOJ题面. 洛谷题面. Solution 随便推一推,可以发现瓶颈在求\(\sum_{i=1}^n i^k\),关于这个可以看看拉格朗日插值法. 复杂度\(O(Tm^2)\). #inc ...
- 洛谷 P4593 [TJOI2018]教科书般的亵渎
洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...
- 【bzoj5339】[TJOI2018]教科书般的亵渎(拉格朗日插值/第二类斯特林数)
传送门 题意: 一开始有很多怪兽,每个怪兽的血量在\(1\)到\(n\)之间且各不相同,\(n\leq 10^{13}\). 然后有\(m\)种没有出现的血量,\(m\leq 50\). 现在有个人可 ...
- Luogu P4593 [TJOI2018]教科书般的亵渎
亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...
- BZOJ5339:[TJOI2018]教科书般的亵渎——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5339 https://www.luogu.org/problemnew/show/P4593 小豆 ...
- 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎
题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...
- BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记
BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...
- [TJOI2018]教科书般的亵渎
嘟嘟嘟 题面挺迷的,拿第一个样例说一下: 放第一次亵渎,对答案产生了\(\sum_{i = 1} ^ {10} i ^ {m + 1} - 5 ^ {m + 1}\)的贡献,第二次亵渎产生了\(\su ...
- P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)
传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...
随机推荐
- oracle小记:dba_data_files
今天给表空间扩展的时候,使用了dba_data_files进行查询.查阅了网上的资料. 该系统系统中含有以下字段 每个字段的含义如下:
- mongodb的安装方法
下载安装 mongodb官网下载地址:https://www.mongodb.org/downloads#produc...直接下载.msi文件并安装到指定目录即可.我的安装路径是D:\mongodb ...
- Tomcat 常见的几个报错与启动问题
报错:A child container failed during start 1.Caused by: java.lang.IllegalArgumentException: Servlet ma ...
- sonar安装
##jdk不要用yum下载的 一.下载sonar源码 cd /usr/local/src wget https://sonarsource.bintray.com/Distribution/sonar ...
- PHPCMS的使用
1.下载安装phpcms 下载完后解压将install_packages上传到服务器并重命名为phpcms_test: 更改目录文件系统权限: chmod -R 777 phpcms_test 配置n ...
- vue-cli: 渲染过程理解(vue create demo01方式创建)
1.根目录配置 vue.config.js, 设置入口文件: index.js module.exports = { pages:{ index: { entry: 'src/pages/home/i ...
- LODOOP中的各种边距 打印项、整体偏移、可打区域、内部边距
Lodop中的打印项内容位置定位,除了打印项本身的top,left值,也会受其他设定或打印机的影响.打印开发,先用虚拟打印机测试出正确结果,然后客户端用打印维护微调常见问题:1.设置打印项相对于纸张居 ...
- 避免MQ消息重发的简单实现思路
一.MQ消息发送 一.MQ消息发送 1.发送端MQ-client(消息生产者:Producer)将消息发送给MQ-server: 2.MQ-server将消息落地: 3.MQ-server回ACK给M ...
- jedis集群版应用
1.pom文件添加依赖: 2.创建配置文件 <!-- jedis集群版配置(JedisCluster通过构造传参(2个参数)) --> <bean id="redisCli ...
- BizTalk Server 如何处理大消息
什么是大消息? 遗憾的是,此问题的答案不而直接与特定的消息大小,绑定,取决于你的 Microsoft 的特定瓶颈 BizTalk Server 系统. 与大消息关联的问题可分为以下几类: 内存不足错误 ...