*默认不支持换行的数学公式

1.

\(a+b=c\)

$a+b=c$

2.

\[a+b=c\]

$$a+b=c$$

3.

$alpha$

$\alpha$

$pi$

$\pi$

4.

$\Gamma$

5.

$a<b<\beta\ll\Psi$

$a\equiv b$

$$\\equiv$$

$$a=b$$

$$a\notin b \ c\in d  $$

6

$\int$

$\iint$

$\iiint$

7.

$$C_{1} \qquad \int_{x} $$

$$\Sigma_{C_{i}}\quad \Psi$$

$$a_{i} \ b_{i}$$

8.

$$C_1+C_2$$

$$C_ {m,n} $$

$${C_{i^2}}^2 = a^2+b^{\int_{x}}$$

9.

$$e^{x^2} \neq e^{x^2}$$

$${sin\alpha}^2+{cos\beta}^2 \equiv 1$$

10.

$$\sqrt{x+y}= \sqrt{\Sigma_{i=1}^{n} x}$$

$\sqrt{a}$

$$a=b\cdot c \ a=b\dot c$$

10.

$$lim_{x \rightarrow 0} \frac {\sin x}{x}=1$$

11.

$$\overline{a} \quad \underline{m+n}$$

12.

$$\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}$$

13.

$$y'=3\widetilde a$$

14.

$$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$$

15.

$$x\in \mathbb{R} x^2>=0$$

16.

$${n\choose m} \qquad {x\atop y+2} \quad ({x\atop y+2})$$

$$C_({x\atop y+2})$$

17.

$${\int_{0}^{\frac{\pi}{2}}}$$

$$\sum_{i=1}^{n}$$

$$\prod_ \epsilon$$

18.

$$1+\left(\frac {1}{1-x^2}\right)^3 \qquad 1+(\frac {1}{1-x^2})^2$$

19.

$$\left(\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}\right)= \Psi $$

20.

$$a=b$$

$$\begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1} $$

21.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) $$

22.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{2}$$

$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{1}$

23.

$$ \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] $$

24.

$$ \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} $$

25.

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$

26.

$$\mbox{已知$a>0,$任意的$b\in \mathbb{R},a+b>0$的概率和$a$的关系$.$}$$

27.

$$

1=1

$$

$$1=1$$

28.

$$\sqrt[3]{x}$$

29.

$$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$

30.

$$[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).]$$

31.

$$\left. \frac{du}{dx} \right|_{x=0}.$$

32.

$$\begin{eqnarray*}\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\ & = & 2 \cos^2 \theta - 1.\end{eqnarray*}$$

代码:

1.

\(a+b=c\)

$a+b=c$

2.

\[a+b=c\]

$$a+b=c$$

3.

$alpha$

$\alpha$

$pi$

$\pi$

4.

$\Gamma$

 5.

$a<b<\beta\ll\Psi$

$a\equiv b$

$$\\equiv$$

$$a=b$$

$$a\notin b \ c\in d  $$

6

$\int$

$\iint$

$\iiint$

7.

$$C_{1} \qquad \int_{x} $$

$$\Sigma_{C_{i}}\quad \Psi$$

$$a_{i} \ b_{i}$$

8.

$$C_1+C_2$$

$$C_ {m,n} $$

$${C_{i^2}}^2 = a^2+b^{\int_{x}}$$

9.

$$e^{x^2} \neq e^{x^2}$$

$${sin\alpha}^2+{cos\beta}^2 \equiv 1$$

10.

$$\sqrt{x+y}= \sqrt{\Sigma_{i=1}^{n} x}$$

$\sqrt{a}$ 

$$a=b\cdot c \ a=b\dot c$$

10.

$$lim_{x \rightarrow 0} \frac {\sin x}{x}=1$$

11.

$$\overline{a} \quad \underline{m+n}$$

12.

$$\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}$$

13.

$$y'=3\widetilde a$$

14.

$$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$$

15.

$$x\in \mathbb{R} x^2>=0$$

16.

$${n\choose m} \qquad {x\atop y+2} \quad ({x\atop y+2})$$

$$C_({x\atop y+2})$$

17.

$${\int_{0}^{\frac{\pi}{2}}}$$

$$\sum_{i=1}^{n}$$

$$\prod_ \epsilon$$

18.

$$1+\left(\frac {1}{1-x^2}\right)^3 \qquad 1+(\frac {1}{1-x^2})^2$$

19.

$$\left(\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}\right)= \Psi $$

20.

$$a=b$$

$$\begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1} $$

21.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) $$

22.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{2}$$

$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{1}$

23.

$$ \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] $$

24.

$$ \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} $$

25.

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$ 26. $$\mbox{已知$a>0,$任意的$b\in \mathbb{R},a+b>0$的概率和$a$的关系$.$}$$ 27. $$ 1=1 $$ $$1=1$$ 28. $$\sqrt[3]{x}$$ 29. $$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$ 30. $$[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).]$$ 31. $$\left. \frac{du}{dx} \right|_{x=0}.$$ 32. $$\begin{eqnarray*}\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\ & = & 2 \cos^2 \theta - 1.\end{eqnarray*}$$

  

Cnblog-Latex数学公式使用测试的更多相关文章

  1. markdown下编辑latex数学公式

    在利用为知笔记编写笔记的时候,有时需要用的markdown,只要把文件名加上后缀.md,就可以使用markdown语法,以下介绍在markdown下编辑latex数学公式. 使用LaTeX写公式的基本 ...

  2. Markdown 添加 Latex 数学公式

    添加公式的方法 Latex 数学公式语法 添加公式的方法 行内公式 $行内公式$ 行间公式 $$行间公式$$ Latex 数学公式语法 角标(上下标) 上标命令^{} 下标命令_{} 上下标命令用来放 ...

  3. C#开发基于Http的LaTeX数学公式转换器

    本文将讲解如何通过codecogs.com和Google.com提供的API接口来将LaTeX数学函数表达式转化为图片形式.具体思路如下: (1)通过TextBox获取用户输入的LaTeX数学表达式, ...

  4. Android开发手记(29) 基于Http的LaTeX数学公式转换器

    本文将讲解如何通过codecogs.com和Google.com提供的API接口来将LaTeX数学函数表达式转化为图片形式.具体思路如下: (1)通过EditText获取用户输入的LaTeX数学表达式 ...

  5. Markdown中Latex 数学公式基本语法

    原文地址:http://blog.csdn.net/u014630987/article/details/70156489 Markdown中Latex 数学公式基本语法 公式排版 分为两种排版: - ...

  6. Latex数学公式编写

    小叙闲言 一直想用latex来编辑文档,但是没有需求,所以也没有去学习一下,但是最近由于要大量敲数学公式,有了latex数学公式的需求,所以来稍稍总结学习一下 1.在MathType中编写Latex数 ...

  7. Latex 数学公式使用入门

    Latex 数学公式使用示例 Latex 数学公式命令中,数学符号都使用反斜杠(backslash, '\')转义英文缩略词 , 一些简单的数学符号命令: 其使用大括号(curly braces, ' ...

  8. LaTeX数学公式输入

    [置顶 Tips ] 在 WinEdt 中快速添加公式字符而不必手动打出一个个letters~: 即会出现如下 GUI Page Control : ------------------------- ...

  9. LaTeX数学公式基础

    LaTeX数学公式 参考:https://www.cnblogs.com/Sinte-Beuve/p/6160905.html 原博客显示有点问题,重新搬运整理LaTeX数学公式部分的基本用法 基础 ...

  10. $\LaTeX$数学公式大全

    $\LaTeX$数学公式大全$1\ Geek\ and\ Hebrew\ letters$ $\LaTeX$数学公式大全$2\ Math\ Constructs$ $\LaTeX$数学公式大全$3\ ...

随机推荐

  1. @CrossOrigin注解与跨域访问

    在Controller中看到@CrossOrigin ,这是什么?有什么用?为什么要用? what? @CrossOrigin是用来处理跨域请求的注解 先来说一下什么是跨域: (站在巨人的肩膀上) 跨 ...

  2. vue-cli3 第三版安装搭建项目

    Vue CLI是一个用于快速Vue.js开发的完整系统 3.X较2.X结构变了很多,更优雅,开发体验更好 官方:https://cli.vuejs.org/guide/ 安装:https://cli. ...

  3. JS创建对象之构造函数模式

    function Person(name, age, job) { this.name = name; this.age = age; this.job = job; this.sayName = f ...

  4. luogu 2704 炮兵阵地 状压dp

    状压的基础题吧 第一次看感觉难上天,后来嘛就.. 套路:先根据自身状态筛出可行状态,再根据地图等其他限制条件筛选适合的状态加入答案 f i,j,k 分别代表 行数,本行状态,上行状态,再累加答案即可 ...

  5. Filter 起航 编程式配置 压缩响应 日志过滤器

    [编程式配置]可以用web.xml配置替换 @WebListenerpublic class FilterListenerConfigurator implements ServletContextL ...

  6. PHP调用API接口实现天气查询功能

    天气预报查询接口API,在这里我使用的是国家气象局天气预报接口 使用较多的还有:新浪天气预报接口.百度天气预报接口.google天气接口.Yahoo天气接口等等. 1.查询方式 根据地名查询各城市天气 ...

  7. win10编译caffe调用matlab接口

    参考 https://www.cnblogs.com/njust-ycc/p/5776286.html https://www.cnblogs.com/heately/p/7922521.html

  8. Myschool乱码问题 和mysql 备份还原

    show variables like 'character_set%'; alter table users modify username ) character set gbk; alter t ...

  9. windows 检测进程pid

    根据端口查进程: netstat -ano |find " netstat -ano | findstr 2018 a 显示所有连接和侦听的端口n 以数字形式显示地址和端口号o 显示关联的进 ...

  10. [C++]Linux之文件拷贝在系统调用和C库函数下的效率比较

    声明:如需引用或者摘抄本博文源码或者其文章的,请在显著处注明,来源于本博文/作者,以示尊重劳动成果,助力开源精神.也欢迎大家一起探讨,交流,以共同进步- 0.0 题目: 1. 分别利用文件的系统调用r ...