*默认不支持换行的数学公式

1.

\(a+b=c\)

$a+b=c$

2.

\[a+b=c\]

$$a+b=c$$

3.

$alpha$

$\alpha$

$pi$

$\pi$

4.

$\Gamma$

5.

$a<b<\beta\ll\Psi$

$a\equiv b$

$$\\equiv$$

$$a=b$$

$$a\notin b \ c\in d  $$

6

$\int$

$\iint$

$\iiint$

7.

$$C_{1} \qquad \int_{x} $$

$$\Sigma_{C_{i}}\quad \Psi$$

$$a_{i} \ b_{i}$$

8.

$$C_1+C_2$$

$$C_ {m,n} $$

$${C_{i^2}}^2 = a^2+b^{\int_{x}}$$

9.

$$e^{x^2} \neq e^{x^2}$$

$${sin\alpha}^2+{cos\beta}^2 \equiv 1$$

10.

$$\sqrt{x+y}= \sqrt{\Sigma_{i=1}^{n} x}$$

$\sqrt{a}$

$$a=b\cdot c \ a=b\dot c$$

10.

$$lim_{x \rightarrow 0} \frac {\sin x}{x}=1$$

11.

$$\overline{a} \quad \underline{m+n}$$

12.

$$\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}$$

13.

$$y'=3\widetilde a$$

14.

$$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$$

15.

$$x\in \mathbb{R} x^2>=0$$

16.

$${n\choose m} \qquad {x\atop y+2} \quad ({x\atop y+2})$$

$$C_({x\atop y+2})$$

17.

$${\int_{0}^{\frac{\pi}{2}}}$$

$$\sum_{i=1}^{n}$$

$$\prod_ \epsilon$$

18.

$$1+\left(\frac {1}{1-x^2}\right)^3 \qquad 1+(\frac {1}{1-x^2})^2$$

19.

$$\left(\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}\right)= \Psi $$

20.

$$a=b$$

$$\begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1} $$

21.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) $$

22.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{2}$$

$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{1}$

23.

$$ \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] $$

24.

$$ \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} $$

25.

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$

26.

$$\mbox{已知$a>0,$任意的$b\in \mathbb{R},a+b>0$的概率和$a$的关系$.$}$$

27.

$$

1=1

$$

$$1=1$$

28.

$$\sqrt[3]{x}$$

29.

$$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$

30.

$$[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).]$$

31.

$$\left. \frac{du}{dx} \right|_{x=0}.$$

32.

$$\begin{eqnarray*}\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\ & = & 2 \cos^2 \theta - 1.\end{eqnarray*}$$

代码:

1.

\(a+b=c\)

$a+b=c$

2.

\[a+b=c\]

$$a+b=c$$

3.

$alpha$

$\alpha$

$pi$

$\pi$

4.

$\Gamma$

 5.

$a<b<\beta\ll\Psi$

$a\equiv b$

$$\\equiv$$

$$a=b$$

$$a\notin b \ c\in d  $$

6

$\int$

$\iint$

$\iiint$

7.

$$C_{1} \qquad \int_{x} $$

$$\Sigma_{C_{i}}\quad \Psi$$

$$a_{i} \ b_{i}$$

8.

$$C_1+C_2$$

$$C_ {m,n} $$

$${C_{i^2}}^2 = a^2+b^{\int_{x}}$$

9.

$$e^{x^2} \neq e^{x^2}$$

$${sin\alpha}^2+{cos\beta}^2 \equiv 1$$

10.

$$\sqrt{x+y}= \sqrt{\Sigma_{i=1}^{n} x}$$

$\sqrt{a}$ 

$$a=b\cdot c \ a=b\dot c$$

10.

$$lim_{x \rightarrow 0} \frac {\sin x}{x}=1$$

11.

$$\overline{a} \quad \underline{m+n}$$

12.

$$\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}$$

13.

$$y'=3\widetilde a$$

14.

$$\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}$$

15.

$$x\in \mathbb{R} x^2>=0$$

16.

$${n\choose m} \qquad {x\atop y+2} \quad ({x\atop y+2})$$

$$C_({x\atop y+2})$$

17.

$${\int_{0}^{\frac{\pi}{2}}}$$

$$\sum_{i=1}^{n}$$

$$\prod_ \epsilon$$

18.

$$1+\left(\frac {1}{1-x^2}\right)^3 \qquad 1+(\frac {1}{1-x^2})^2$$

19.

$$\left(\underbrace{\int_{a_1}^{a_2}f_1(x)dx+\int_{a_2}^{a_3}f_2(x)dx+\cdots+\int_{a_{n-1}}^{a_n}f_n(x)dx}_{\iint_{\Sigma_{i=1}^{n} g(b_i) dx}}\right)= \Psi $$

20.

$$a=b$$

$$\begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} \tag{1} $$

21.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) $$

22.

$$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{2}$$

$\mathbf{X} = \left( \begin{array}{ccc} x_{11} & x_{12} & \ldots \\\ x_{21} & x_{22} & \ldots \\\ \vdots & \vdots & \ddots \end{array} \right) \tag{1}$

23.

$$ \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] $$

24.

$$ \left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right] \tag{7} $$

25.

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$ 26. $$\mbox{已知$a>0,$任意的$b\in \mathbb{R},a+b>0$的概率和$a$的关系$.$}$$ 27. $$ 1=1 $$ $$1=1$$ 28. $$\sqrt[3]{x}$$ 29. $$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$ 30. $$[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).]$$ 31. $$\left. \frac{du}{dx} \right|_{x=0}.$$ 32. $$\begin{eqnarray*}\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\ & = & 2 \cos^2 \theta - 1.\end{eqnarray*}$$

  

Cnblog-Latex数学公式使用测试的更多相关文章

  1. markdown下编辑latex数学公式

    在利用为知笔记编写笔记的时候,有时需要用的markdown,只要把文件名加上后缀.md,就可以使用markdown语法,以下介绍在markdown下编辑latex数学公式. 使用LaTeX写公式的基本 ...

  2. Markdown 添加 Latex 数学公式

    添加公式的方法 Latex 数学公式语法 添加公式的方法 行内公式 $行内公式$ 行间公式 $$行间公式$$ Latex 数学公式语法 角标(上下标) 上标命令^{} 下标命令_{} 上下标命令用来放 ...

  3. C#开发基于Http的LaTeX数学公式转换器

    本文将讲解如何通过codecogs.com和Google.com提供的API接口来将LaTeX数学函数表达式转化为图片形式.具体思路如下: (1)通过TextBox获取用户输入的LaTeX数学表达式, ...

  4. Android开发手记(29) 基于Http的LaTeX数学公式转换器

    本文将讲解如何通过codecogs.com和Google.com提供的API接口来将LaTeX数学函数表达式转化为图片形式.具体思路如下: (1)通过EditText获取用户输入的LaTeX数学表达式 ...

  5. Markdown中Latex 数学公式基本语法

    原文地址:http://blog.csdn.net/u014630987/article/details/70156489 Markdown中Latex 数学公式基本语法 公式排版 分为两种排版: - ...

  6. Latex数学公式编写

    小叙闲言 一直想用latex来编辑文档,但是没有需求,所以也没有去学习一下,但是最近由于要大量敲数学公式,有了latex数学公式的需求,所以来稍稍总结学习一下 1.在MathType中编写Latex数 ...

  7. Latex 数学公式使用入门

    Latex 数学公式使用示例 Latex 数学公式命令中,数学符号都使用反斜杠(backslash, '\')转义英文缩略词 , 一些简单的数学符号命令: 其使用大括号(curly braces, ' ...

  8. LaTeX数学公式输入

    [置顶 Tips ] 在 WinEdt 中快速添加公式字符而不必手动打出一个个letters~: 即会出现如下 GUI Page Control : ------------------------- ...

  9. LaTeX数学公式基础

    LaTeX数学公式 参考:https://www.cnblogs.com/Sinte-Beuve/p/6160905.html 原博客显示有点问题,重新搬运整理LaTeX数学公式部分的基本用法 基础 ...

  10. $\LaTeX$数学公式大全

    $\LaTeX$数学公式大全$1\ Geek\ and\ Hebrew\ letters$ $\LaTeX$数学公式大全$2\ Math\ Constructs$ $\LaTeX$数学公式大全$3\ ...

随机推荐

  1. HDU - 1698 Just a Hook (线段树区间修改)

    https://cn.vjudge.net/problem/HDU-1698 题意 大小为n的数组,数组元素初始值为1,有q次操作,x,y,z表示从第x到第y所有的元素的值变为z,最后问1到n的和. ...

  2. 细说REST API安全之概述

    目前许多前后端应用都采取REST架构风格,前端应用和后端服务通过API进行数据交换.通过REST API在网络中进行数据交换时很容易被网络抓包,然后进行恶意批量调用,最终导致后端服务不堪负重而影响正常 ...

  3. Java入门系列 Lambda表达式

    https://blog.csdn.net/bitcarmanlee/article/details/70195403

  4. Java8新特性 重复注解与类型注解

    import java.lang.annotation.Repeatable; import java.lang.annotation.Retention; import java.lang.anno ...

  5. 关于公众平台接口不再支持HTTP方式调用的公告

    为保证数据传输安全,提高业务安全性,公众平台将不再支持HTTP方式调用.避免影响正常使用中含有HTTP方式调用的服务,请开发者尽快调整,将现有通过HTTP方式调用的切换成HTTPS调用,平台将于201 ...

  6. Ubuntu18.04中安装cuda的记录

    一.参考: https://blog.csdn.net/QLULIBIN/article/details/78714596 https://www.jianshu.com/p/00c37b09f0f3 ...

  7. c# 适配器批量修改

    DataTable dt; //在方法外部申明数据表SqlDataAdapter adapter; //在方法外部申明数据适配器 查询方法adapter = new SqlDataAdapter(Sq ...

  8. TensorFlow从入门到理解(六):可视化梯度下降

    运行代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.m ...

  9. LOJ #6261 一个人的高三楼

    生成函数和组合数学的灵活应用 LOJ #6261 题意:求一个数列的$ k$次前缀和 $ Solution:$ 我们对原数列$ a$建生成函数$ A=\sum\limits_{i=0}^{n-1} a ...

  10. js开发模式

    js中的开发模式进化史: js中有最初的只能由基本数据类型描述——>单例模式-->工厂模式-->构造函数模式-->原型模式-->各个模式相结合的混合模式,下面我会给大家逐 ...