Storm - 大数据Big Data实时处理架构

 

什么是Storm?

Storm是:
• 快速且可扩展伸缩
• 容错
• 确保消息能够被处理
• 易于设置和操作
• 开源的分布式实时计算系统
- 最初由Nathan Marz开发
- 使用Java 和 Clojure 编写

Storm和Hadoop主要区别是实时和批处理的区别:

Storm概念 组成:Spout 和Bolt组成Topology。

Tuple是Storm的数据模型,如['jdon',12346]

多个Tuple组成事件流:

Spout是读取需要分析处理的数据源,然后转为Tuples,这些数据源可以是Web日志、 API调用、数据库等等。Spout相当于事件流的生产者。

Bolt 处理Tuples然后再创建新的Tuples流,Bolt相当于事件流的消费者。

Bolt 作为真正业务处理者,主要实现大数据处理的核心功能,比如转换数据,应用相应过滤器,计算和聚合数据(比如统计总和等等) 。

以Twitter的某个Tweet为案例,看看Storm如何处理:

这些tweett贴内容是:“No Small Cell Lung #Cancer(没有小细胞肺癌#癌症)” "An #OnCology Consult...."

这些贴被Spout读取以后,产生Tuple,字段名是tweet,内容是"No Small Cell Lung #Cancer",格式类似:['No Small Cell Lung #Cancer',133221]。

然后进入被流 消费者Bolt进行处理,第一个Bolt是SplitSentence,将tuple内容进行分离,结果成为:一个个单词:"No" "Small" "Cell" "Lung" "#Cancer" ;然后经过第二个Bolt进行过滤HashTagFilter处理,Hash标签是单词中用#标注的,也就是Cancer;再经过HasTagCount计数,可以本地内存缓存这个计数结果,最后通过PrinterBolt打印出标签单词统计结果 。

我们使用Stom所要做的就是编制Spout和Bolt代码:

public class RandomSentenceSpout extends BaseRichSpout {
  SpoutOutputCollector collector;
  Random random;

  //读入外部数据
  public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
    this.collector = collector;
    random = new Random();
  }
  //产生Tuple
   public void nextTuple() {
    String[] sentences = new String[] {
      "No Small Cell Lung #Cancer",
      "An #OnCology Consultant apple a day keeps the doctor away",
      "four score and seven years ago",
      "snow white and the seven dwarfs",
      "i am at two with nature"
    };
    String tweet = sentences[random.nextInt(sentences.length)];
    //定义字段名"tweet" 的值 
    collector.emit(new Values(tweet));

  }

  // 定义字段名"tweet"

  public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("tweet"));
  }
  @Override
  public void ack(Object msgId) {}
  @Override
  public void fail(Object msgId) {}
}

下面是Bolt的代码编写:

public class SplitSentenceBolt extends BaseRichBolt {
  OutputCollector collector;

  @Override
  public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
    this.collector = collector;
  }
  @Override 消费者激活主要方法:分离成单个单词
  public void execute(Tuple input) {
    for (String s : input.getString(0).split("\\s")) {
      collector.emit(new Values(s));
    }
  }
  @Override 定义新的字段名
  public void declareOutputFields(OutputFieldsDeclarer declarer) {
    declarer.declare(new Fields("word"));
  }

最后是装配运行Spout和Bolt的客户端调用代码:

public class WordCountTopology {
  public static void main(String[] args) throws Exception {
    TopologyBuilder builder = new TopologyBuilder();
    builder.setSpout("tweet", new RandomSentenceSpout(), 2);
    builder.setBolt("split", new SplitSentenceBolt(), 4)
      .shuffleGrouping("tweet")
      .setNumTasks(8);
    builder.setBolt("count", new WordCountBolt(), 6)
      .fieldsGrouping("split", new Fields("word"));
    ..设置多个Bolt

    Config config = new Config();
    config.setNumWorkers(4);
    
    StormSubmitter.submitTopology("wordcount", config, builder.createTopology());

// Local testing
//LocalCluster cluster = new LocalCluster();
// cluster.submitTopology("wordcount", config, builder.createTopology());
//Thread.sleep(10000);
//cluster.shutdown();
}
}

在这个代码中定义了一些参数比如Works的数目是4,其含义在后面详细分析。

下面我们要将上面这段代码发布部署到Storm中,首先了解Storm物理架构图:

Nimbus是一个主后台处理器,主要负责:
1.发布分发代码
2.分配任务
3.监控失败。

Supervisor是负责当前这个节点的后台工作处理器的监听。

Work类似Java的线程,采取JDK的Executor 。

下面开始将我们的代码部署到这个网络拓扑中:

将代码Jar包上传到Nimbus的inbox,包括所有的依赖包,然后提交。

Nimbus将保存在本地文件系统,然后开始配置网络拓扑,分配开始拓扑。

见下图:

Nimbus服务器将拓扑Jar 配置和结构下载到 Supervisor,负载平衡ZooKeeper分配某个特定的Supervisor服务器,而Supervisor开始基于配置分配Work,Work调用JDK的Executor启动线程,开始任务处理。

下面是我们代码对拓扑分配的参数示意图:

Executor启动的线程数目是12个,组件的实例是16个,那么如何在实际服务器中分配呢?如下图:

图中RsSpout代表我们的代码中RandomSentenceSpout;SplitSentenceBolt简写为SSbolt;

http://www.jdon.com/bigdata/storm.html

Storm和Hadoop 区别的更多相关文章

  1. Storm与Hadoop的角色和组件比较

    Storm与Hadoop的角色和组件比较 Storm 集群和 Hadoop 集群表面上看很类似.但是 Hadoop 上运行的是 MapReduce 作业,而在 Storm 上运行的是拓扑 Topolo ...

  2. Storm概念学习系列之Storm与Hadoop的角色和组件比较

    不多说,直接上干货! Storm与Hadoop的角色和组件比较 Storm 集群和 Hadoop 集群表面上看很类似.但是 Hadoop 上运行的是 MapReduce 作业,而在 Storm 上运行 ...

  3. Storm与Spark区别

    Storm擅长于动态处理大量实时生产的小数据块,概念上是将小数据量的数据源源不断传给过程: Spark擅长对现有的数据全集做处理,概念是将过程传给大数据量的数据. 二者设计思路相反.Storm侧重于处 ...

  4. spark、storm与Hadoop

    1. Storm是什么,怎么做,如何做的更好?Storm是一个开源的分布式实时计算系统,它可以简单.可靠地处理大量的数据流.Storm有很多应用场景,如实时分析.在线机器学习.持续计算.分布式RPC. ...

  5. storm与hadoop的对照

       hadoop 是实现了 mapreduce 的思想,将数据切片计算来处理大量的离线数据. hadoop处理的数据必须是已经存放在 hdfs 上或者类似 hbase 的数据库中.所以 hadoop ...

  6. spark与Hadoop区别

    2分钟读懂Hadoop和Spark的异同 2016.01.25 11:15:59 来源:51cto作者:51cto ( 0 条评论 )   谈到大数据,相信大家对Hadoop和Apache Spark ...

  7. (第8篇)实时可靠的开源分布式实时计算系统——Storm

    摘要: 在Hadoop生态圈中,针对大数据进行批量计算时,通常需要一个或者多个MapReduce作业来完成,但这种批量计算方式是满足不了对实时性要求高的场景.那Storm是怎么做到的呢? 博主福利 给 ...

  8. hadoop、storm和spark的区别、比较

    一.hadoop.Storm该选哪一个? 为了区别hadoop和Storm,该部分将回答如下问题:1.hadoop.Storm各是什么运算2.Storm为什么被称之为流式计算系统3.hadoop适合什 ...

  9. hadoop/storm以及hive/hbase/pig区别整理

    STORM与HADOOP的比较 对于一堆时刻在增长的数据,如果要统计,可以采取什么方法呢? 等数据增长到一定程度的时候,跑一个统计程序进行统计.适用于实时性要求不高的场景.如将数据导到HDFS,再运行 ...

随机推荐

  1. 《形式化分析工具Scyther性能研究》------摘抄整理

    本篇论文的主要创新点在--------使用 Scyther工具发现对部分 KCI攻击搜索出现漏报的现象,并给出了存在的原因, 介绍了 形式化分析工具   AVispa全称是   Automated V ...

  2. ORACLE归档日志满了之后,如何删除归档日志

    当ORACLE归档日志满后如何正确删除归档日志 版权声明:本文为博主原创文章,未经博主允许不得转载. 当ORACLE 归档日志满了后,将无法正常登入ORACLE,需要删除一部分归档日志才能正常登入OR ...

  3. codeblocks glfw glew glm 配置

    Code in code::blocks Download Mini project in c,c++,c# ,OpenGL,GLUT,GLFW,windows form application so ...

  4. appium+python 【Mac】UI自动化测试封装框架介绍 <七>---脚本编写规范

    脚本的使用,注释非常关键,无论自己的后期查看还是别人使用,都可以通过注释很明确的知道代码所表达的意思,明确的知道如何调用方法等等.每个团队均有不同的商定形式来写脚本,因此没有明确的要求和规范来约束.如 ...

  5. mongo operations

    Check Mongo Operate Logs db.getCollection('oplog.rs').find({'ns':{$in:['sxa.sxacc-organizations','sx ...

  6. easyui-filebox上传图片到阿里

    应用场景:在fixbox图片上传时在预览图片img标签底下点击按钮触发一下函数 参考:https://www.cnblogs.com/awzf/p/9843814.html js //修改该时上传产品 ...

  7. 从package.json中获取属性

    var pjson = require('./package.json'); console.log(pjson.version); 详见:https://stackoverflow.com/ques ...

  8. 后缀自动机求endpos集大小

    #include<bits/stdc++.h> #define fi first #define se second #define INF 0x3f3f3f3f #define LNF ...

  9. 快捷键IntelliJ IDEA For Mac

    http://www.cnblogs.com/wxd0108/p/5295017.html Mac键盘符号和修饰键说明 ⌘ Command ⇧ Shift ⌥ Option ⌃ Control ↩︎  ...

  10. 「ZJOI2014」力 FFT

    FFTl裸题,小于的部分直接做,大于的部分倒序后再做就行了. #include <bits/stdc++.h> using namespace std; const int MAXN = ...