Storm和Hadoop 区别
Storm - 大数据Big Data实时处理架构
什么是Storm?
Storm是:
• 快速且可扩展伸缩
• 容错
• 确保消息能够被处理
• 易于设置和操作
• 开源的分布式实时计算系统
- 最初由Nathan Marz开发
- 使用Java 和 Clojure 编写
Storm和Hadoop主要区别是实时和批处理的区别:

Storm概念 组成:Spout 和Bolt组成Topology。

Tuple是Storm的数据模型,如['jdon',12346]
多个Tuple组成事件流:

Spout是读取需要分析处理的数据源,然后转为Tuples,这些数据源可以是Web日志、 API调用、数据库等等。Spout相当于事件流的生产者。
Bolt 处理Tuples然后再创建新的Tuples流,Bolt相当于事件流的消费者。
Bolt 作为真正业务处理者,主要实现大数据处理的核心功能,比如转换数据,应用相应过滤器,计算和聚合数据(比如统计总和等等) 。
以Twitter的某个Tweet为案例,看看Storm如何处理:

这些tweett贴内容是:“No Small Cell Lung #Cancer(没有小细胞肺癌#癌症)” "An #OnCology Consult...."
这些贴被Spout读取以后,产生Tuple,字段名是tweet,内容是"No Small Cell Lung #Cancer",格式类似:['No Small Cell Lung #Cancer',133221]。
然后进入被流 消费者Bolt进行处理,第一个Bolt是SplitSentence,将tuple内容进行分离,结果成为:一个个单词:"No" "Small" "Cell" "Lung" "#Cancer" ;然后经过第二个Bolt进行过滤HashTagFilter处理,Hash标签是单词中用#标注的,也就是Cancer;再经过HasTagCount计数,可以本地内存缓存这个计数结果,最后通过PrinterBolt打印出标签单词统计结果 。
我们使用Stom所要做的就是编制Spout和Bolt代码:
public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector collector;
Random random;
//读入外部数据
public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
this.collector = collector;
random = new Random();
}
//产生Tuple
public void nextTuple() {
String[] sentences = new String[] {
"No Small Cell Lung #Cancer",
"An #OnCology Consultant apple a day keeps the doctor away",
"four score and seven years ago",
"snow white and the seven dwarfs",
"i am at two with nature"
};
String tweet = sentences[random.nextInt(sentences.length)];
//定义字段名"tweet" 的值
collector.emit(new Values(tweet));
}
// 定义字段名"tweet"
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("tweet"));
}
@Override
public void ack(Object msgId) {}
@Override
public void fail(Object msgId) {}
}
下面是Bolt的代码编写:
public class SplitSentenceBolt extends BaseRichBolt {
OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
@Override 消费者激活主要方法:分离成单个单词
public void execute(Tuple input) {
for (String s : input.getString(0).split("\\s")) {
collector.emit(new Values(s));
}
}
@Override 定义新的字段名
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
最后是装配运行Spout和Bolt的客户端调用代码:
public class WordCountTopology {
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("tweet", new RandomSentenceSpout(), 2);
builder.setBolt("split", new SplitSentenceBolt(), 4)
.shuffleGrouping("tweet")
.setNumTasks(8);
builder.setBolt("count", new WordCountBolt(), 6)
.fieldsGrouping("split", new Fields("word"));
..设置多个Bolt
Config config = new Config();
config.setNumWorkers(4);
StormSubmitter.submitTopology("wordcount", config, builder.createTopology());
// Local testing
//LocalCluster cluster = new LocalCluster();
// cluster.submitTopology("wordcount", config, builder.createTopology());
//Thread.sleep(10000);
//cluster.shutdown();
}
}
在这个代码中定义了一些参数比如Works的数目是4,其含义在后面详细分析。
下面我们要将上面这段代码发布部署到Storm中,首先了解Storm物理架构图:

Nimbus是一个主后台处理器,主要负责:
1.发布分发代码
2.分配任务
3.监控失败。
Supervisor是负责当前这个节点的后台工作处理器的监听。
Work类似Java的线程,采取JDK的Executor 。
下面开始将我们的代码部署到这个网络拓扑中:

将代码Jar包上传到Nimbus的inbox,包括所有的依赖包,然后提交。
Nimbus将保存在本地文件系统,然后开始配置网络拓扑,分配开始拓扑。
见下图:

Nimbus服务器将拓扑Jar 配置和结构下载到 Supervisor,负载平衡ZooKeeper分配某个特定的Supervisor服务器,而Supervisor开始基于配置分配Work,Work调用JDK的Executor启动线程,开始任务处理。
下面是我们代码对拓扑分配的参数示意图:

Executor启动的线程数目是12个,组件的实例是16个,那么如何在实际服务器中分配呢?如下图:

图中RsSpout代表我们的代码中RandomSentenceSpout;SplitSentenceBolt简写为SSbolt;
http://www.jdon.com/bigdata/storm.html
Storm和Hadoop 区别的更多相关文章
- Storm与Hadoop的角色和组件比较
Storm与Hadoop的角色和组件比较 Storm 集群和 Hadoop 集群表面上看很类似.但是 Hadoop 上运行的是 MapReduce 作业,而在 Storm 上运行的是拓扑 Topolo ...
- Storm概念学习系列之Storm与Hadoop的角色和组件比较
不多说,直接上干货! Storm与Hadoop的角色和组件比较 Storm 集群和 Hadoop 集群表面上看很类似.但是 Hadoop 上运行的是 MapReduce 作业,而在 Storm 上运行 ...
- Storm与Spark区别
Storm擅长于动态处理大量实时生产的小数据块,概念上是将小数据量的数据源源不断传给过程: Spark擅长对现有的数据全集做处理,概念是将过程传给大数据量的数据. 二者设计思路相反.Storm侧重于处 ...
- spark、storm与Hadoop
1. Storm是什么,怎么做,如何做的更好?Storm是一个开源的分布式实时计算系统,它可以简单.可靠地处理大量的数据流.Storm有很多应用场景,如实时分析.在线机器学习.持续计算.分布式RPC. ...
- storm与hadoop的对照
hadoop 是实现了 mapreduce 的思想,将数据切片计算来处理大量的离线数据. hadoop处理的数据必须是已经存放在 hdfs 上或者类似 hbase 的数据库中.所以 hadoop ...
- spark与Hadoop区别
2分钟读懂Hadoop和Spark的异同 2016.01.25 11:15:59 来源:51cto作者:51cto ( 0 条评论 ) 谈到大数据,相信大家对Hadoop和Apache Spark ...
- (第8篇)实时可靠的开源分布式实时计算系统——Storm
摘要: 在Hadoop生态圈中,针对大数据进行批量计算时,通常需要一个或者多个MapReduce作业来完成,但这种批量计算方式是满足不了对实时性要求高的场景.那Storm是怎么做到的呢? 博主福利 给 ...
- hadoop、storm和spark的区别、比较
一.hadoop.Storm该选哪一个? 为了区别hadoop和Storm,该部分将回答如下问题:1.hadoop.Storm各是什么运算2.Storm为什么被称之为流式计算系统3.hadoop适合什 ...
- hadoop/storm以及hive/hbase/pig区别整理
STORM与HADOOP的比较 对于一堆时刻在增长的数据,如果要统计,可以采取什么方法呢? 等数据增长到一定程度的时候,跑一个统计程序进行统计.适用于实时性要求不高的场景.如将数据导到HDFS,再运行 ...
随机推荐
- LVS介绍及相关配置
一. LVS概述 LVS是一种工作在四层协议上的负载均衡解决方案,在1998年5月由章文嵩博士创建.目前广泛使用的负载均衡模型主要有: 1)工作在四层协议(LVS):主要用于四层协议上的负载均衡,性能 ...
- FreeRTOS调度器
FreeRTOS----调度器 调度器的启动流程分析 当创建完任务之后,会调用vTaskStartScheduler()函数,启动任务调度器: void vTaskStartScheduler( vo ...
- 使用phpstudy搭建的外网网站 运行很慢 解决办法
将连接数据库的配置文件 localhost 修改为127.0.0.1 PHP5.3以上,如果是链接localhost,会检测是IPV4还是IPV6,所以会比较慢.解决办法是:链接数据的时候,不要填写 ...
- Docker 退出不关闭容器以及保存日志到本地
Docker保存日志到本地 docker logs +你需要添加的额外参数 + 容器id > 文件名称 然后查看这个文件就可以了,也可以通过ftp协议下载到本地 Docker退出容器不关闭容器的 ...
- investigate issues of real time interrupted
Issues: customer report that real time will interrupted frequently as below: Root Cause: some storm ...
- 浏览器顶部设置margin-top时存在的bug
浏览器bug<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8 ...
- 2018 开始认真学习点python
2018 伊始,又是春暖花开.俗语,“一年之计在于春”.又是一年立志时. 决定认真学习一些web. 本来倾向与学习NodeJS的.可是之前买的python的书太多了.就先紧手头的资源看了再说吧. 今天 ...
- java如何向数组里添加元素
向数组里添加一个元素怎么添加,这儿总结有三种方法: 1.一般数组是不能添加元素的,因为他们在初始化时就已定好长度了,不能改变长度.但有个可以改变大小的数组为ArrayList,即可以定义一个Array ...
- 利用模板和C++11特性实现的智能指针-作用同share_ptr
根据C++11特性实现,基本上实现了同SharePtr同样的功能,有时间继续优化.之前一直以为引用计数是一个静态的int类型,实际上静态值是不可以的.之前项目中总是不太习惯使用智能指针.通过自实现的方 ...
- 【概率论】2-3:贝叶斯定理(Bayes' Theorem)
title: [概率论]2-3:贝叶斯定理(Bayes' Theorem) categories: Mathematic Probability keywords: Bayes' Theorem 贝叶 ...