原题戳这里

首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\)。

然后容(hen)易(nan)发现即使加上了随机,那\(tot\)个也一定要被操作,也就是说操作这\(tot\)个之外的都是没用的。

于是就可以\(dp\)了,设\(f[i]\)表示还剩\(i\)个必须要操作的未操作,转移如下:

\(f[i]=\frac{i}{n}+\frac{n-i}{n}(f[i]+f[i+1]+1)\)

移项得到\(f[i]=\frac{(n-i)f[i+1]+n}{i}\)

边界\(f[n]=1\)

最后如果\(tot\leqslant k\)直接输出\(tot*n!\),否则输出\(k+n!\sum\limits_{i=k+1}^{tot}f[i]\)

#include <bits/stdc++.h>

using namespace std;

#define MAXN 100000
#define MOD 100003 int n, k, tot, ans, a[MAXN + 5], f[MAXN + 5], fac = 1;
vector<int> G[MAXN + 5]; int fpow(int x, int p) {
int ret = 1;
while(p) {
if(p & 1) ret = 1LL * ret * x % MOD;
x = 1LL * x * x % MOD;
p >>= 1;
}
return ret;
} int main() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
for (int j = i; j <= n; j += i) G[j].push_back(i);
fac = 1LL * fac * i % MOD;
}
for (int i = n; i >= 1; --i) {
if(!a[i]) continue;
tot++;
for (auto j : G[i]) a[j] ^= 1;
}
if (tot <= k) ans = 1LL * tot * fac % MOD;
else {
f[n] = 1, ans = k;
for (int i = n - 1; i >= 1; --i) f[i] = (1LL * (n - i) * f[i + 1] % MOD + n) * fpow(i, MOD-2) % MOD;
for (int i = k + 1; i <= tot; ++i) ans = (ans + f[i]) % MOD;
ans = 1LL * ans * fac % MOD;
}
printf("%d\n", ans);
return 0;
}

[六省联考2017]分手是祝愿——期望DP的更多相关文章

  1. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  2. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  3. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  4. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  5. bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿

    http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...

  6. [BZOJ4872][六省联考2017]分手是祝愿

    BZOJ Luogu sol 首先发现肯定有解,又因为每个位置至多操作一次,所以最优解一定是在\([0,n]\)之间 有一种可以在\(O(\sum_{i=1}^{n}\lfloor\frac{n}{i ...

  7. luoguP3750 [六省联考2017]分手是祝愿 概率期望DP + 贪心

    ...........真的神状态了,没办法去想的状态................... 考试的时候选择$50$分贪心+$15$分状压吧,别的点就放弃算了........ 令$f[i]$表示从最小步 ...

  8. BZOJ4872 [六省联考2017]分手是祝愿 【期望dp】

    题目 Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 ...

  9. 洛谷P3750 [六省联考2017]分手是祝愿(期望dp)

    传送门 嗯……概率期望这东西太神了…… 先考虑一下最佳方案,肯定是从大到小亮的就灭(这个仔细想一想应该就能发现) 那么直接一遍枚举就能$O(nlogn)$把这个东西给搞出来 然后考虑期望dp,设$f[ ...

随机推荐

  1. beego conf配置文件

    1. 多个配置文件通过include引入 自定义配置文件mysql.conf 在app.conf 中引入mysql.conf include "mysql.conf"

  2. 关于element中的父子组件的传值问题

    首先讲一下父子组件的传值问题. 这是大家很熟悉的一张图,讲述了父子组件传值的过程.父组件通过prop传值给子组件,子组件通过$emit给父组件发送消息来使父组件的prop发生变化.这都是老生常谈了.下 ...

  3. 记录下为了玩 docker 安装 CentOS 7 最简化版后遇到的一些问题

    今天我的腾讯云服务器在使用docker安装ElasticSearch和Kibana的时候内存不够,安装完直接卡死.所以无奈只能在本地上跑VMWare安装CentOS7来运行测试. 从阿里云镜像地址:h ...

  4. SQL SERVER 字符串函数 REPLACE()

    定义: REPLACE()返回用另一个字符串值替换原字符串中出现的所有指定字符串值之后的字符串. 语法: REPLACE ( string_expression , string_pattern , ...

  5. springboot集成mongoDB简易使用

    1.首先是添加Spring Data mongo的配置依赖 <dependency> <groupId>org.springframework.boot</groupId ...

  6. springboot问题

    1.导入数据库jar包后,配置好,发现报错 数据库连接不成功  加上@SpringBootApplication(exclude = DataSourceAutoConfiguration.class ...

  7. Ural 1248 Sequence Sum 题解

    目录 Ural 1248 Sequence Sum 题解 题意 题解 程序 Ural 1248 Sequence Sum 题解 题意 给定\(n\)个用科学计数法表示的实数\((10^{-100}\s ...

  8. 利用Python进行数据分析_Numpy_基础_1

    ndarray:多维数组 ndarray 每个数组元素必须是相同类型,每个数组都有shape和dtype对象. shape 表示数组大小 dtype 表示数组数据类型 array 如何创建一个数组? ...

  9. 【Python基础】12_Python中的容器类型公共方法

    1.Python中的内置函数 注:比较两个值,使用 <. >. == 2.切片 注:字典是一个无序集合,不能切片 3.运算符 字典中的in .not in  对字段操作时,只能判断字典的k ...

  10. C# Redis分布式锁的应用 - 叶子栈 - SegmentFault 思否

    原文:C# Redis分布式锁的应用 - 叶子栈 - SegmentFault 思否 叶子 1 微信扫一扫 新浪微博 Twitter Facebook C# Redis分布式锁的应用 c#redis分 ...