给定一个序列,找出其中最长的,严格递增的子序列的长度(不要求连续)。

解法一:动态规划

通过一个辅助数组记录每一个元素处的最大序列长度(在必须选这个元素的前提下),然后在坐标小于当前元素的数组扫描,在值小于当前元素的集合中选出最大值即为当前元素处的最大子序列。状态转移方程:

dp[i] = max(1, max(dp[j]+1, j<i, nums[j]<nums[i])

class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
dp = [] # 用于存储每一个元素处的最大序列的长度 n = len(nums)
max_ = 0
for i in range(n):
tmp = 1
for j in range(0,i):
if nums[j]<nums[i]:
tmp = max(tmp,1+dp[j])
dp.append(tmp)
if max_ < tmp:
max_ = tmp
return max_

解法2:贪心算法

class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
if n == 0:
return 0
dp = [nums[0]] for i in range(1,n):
if nums[i] > dp[-1]:
dp.append(nums[i])
continue l,r = 0, len(dp)-1
while l < r:
mid = (l+r-1)//2
if dp[mid] < nums[i]:
l = mid + 1
else:
r = mid
dp[l] = nums[i] return len(dp)

2. 最长公共子序列

两个数组中,最长的相等的子序列(不要求连续)。

解法1:动态规划

以两个字符串为例:

str1 = 1a2b3c

str2 = 123abc

1 a 2 b 3 c
1 1 1 1 1 1 1
2 1 1 2 2 2 2
3 1 1 2 2 3 3
a 1 2 2 2 3 3
b 1 2 2 3 3 3
c 1 2 2 3 3 4

从上表可以看出:

  1. 当str1[i] = str2[j]时,此时的最大子序列长度应该等于左上角的值加上1(当i=0时为1,因为此时没有左上角);

  2. 当str1[i] != str2[j]时,此时的最大子序列长度为上方和左方的最大值(当i=0时直接为上方的值)

class LCS:
def findLCS(self, A, n, B, m):
dp1 = [0 for i in range(n)] #
for i in range(m):
dp2 = [0 for each in range(n)]
for j in range(n):
if B[i] == A[j]:
dp2[j] = dp1[j-1]+1 if j>0 else 1
else:
dp2[j] = max(dp2[j-1],dp1[j]) if j>0 else dp1[j]
dp1 = dp2
return dp2[-1]

3. 最长公共子串

最长公共子串:两个字符串中连续相等的最长子串。

解法一:动态规划

class LongestSubstring:
def findLongest(self, A, n, B, m):
dp = [[0 for i in range(n)] for j in range(m)]
max_ = 0
for i in range(m):
for j in range(n):
if B[i] == A[j]:
if i>0 and j >0:
dp[i][j]=dp[i-1][j-1] +1
else:
dp[i][j] = 1
if dp[i][j]>max_:
max_=dp[i][j]
return max_

动态规划1——最长递增子序列、最长公共子序列、最长公共子串(python实现)的更多相关文章

  1. uva103(最长递增序列,dag上的最长路)

    题目的意思是给定k个盒子,每个盒子的维度有n dimension 问最多有多少个盒子能够依次嵌套 但是这个嵌套的规则有点特殊,两个盒子,D = (d1,d2,...dn) ,E = (e1,e2... ...

  2. 最长递增子序列问题—LIS

    问题:给定一组数 a0,a0,....,an-1. 求该序列的最长递增(递减)序列的长度. 最长递增子序列长度的求法有O(n^2)和O(nlogn)两种算法. 1.复杂度为O(n^2)的算法. 设L[ ...

  3. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

  4. 【动态规划】拦截导弹_dilworth定理_最长递增子序列

    问题 K: [动态规划]拦截导弹 时间限制: 1 Sec  内存限制: 256 MB提交: 39  解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...

  5. 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串

    LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...

  6. 动态规划----最长递增子序列问题(LIS)

    题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...

  7. 算法之动态规划(最长递增子序列——LIS)

    最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...

  8. [C++] 动态规划之矩阵连乘、最长公共子序列、最大子段和、最长单调递增子序列、0-1背包

    一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子 ...

  9. 51Nod - 1134 最长递增子序列【动态规划】

    给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行:1个数N ...

  10. 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法

    1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答      ...

随机推荐

  1. AWS 存储服务(三)

    目录 AWS S3 业务场景 挑战 解决方案 S3的好处 S3 属性 存储桶 Buckets 对象 Object S3 特性 S3 操作 可用性和持久性 一致性 S3 定价策略 S3高级功能 存储级别 ...

  2. 【VS开发】【数据库开发】libevent入门

    花了两天的时间在libevent上,想总结下,就以写简单tutorial的方式吧,貌似没有一篇简单的说明,让人马上就能上手用的.首先给出官方文档吧: http://libevent.org ,首页有个 ...

  3. 转 Linux平台卸载MySQL总结

    如何在Linux下卸载MySQL数据库呢? 下面总结.整理了一下Linux平台下卸载MySQL的方法. MySQL的安装主要有三种方式:二进制包安装(Using Generic Binaries).R ...

  4. CentOS系统安装配置JDK

    我们可以通过xftp工具将jdk文件上传至CentOS系统指定文件夹中 一.安装jdk 进入jdk存放目录,将jdk解压至install文件夹中: tar -zxf jdk-8u151-linux-x ...

  5. Java使用icepdf转高清图片

    <dependency> <groupId>org.icepdf.os</groupId> <artifactId>icepdf-core</ar ...

  6. [CF37D]Lesson Timetable_动态规划

    Lesson Timetable 题目链接:https://www.codeforces.com/contest/37/problem/D 数据范围:略. 题解: 根本就没想到可以动态规划. 首先从前 ...

  7. [转帖]详解oracle数据库唯一主键SYS_GUID()

    详解oracle数据库唯一主键SYS_GUID() https://www.toutiao.com/i6728736163407856139/ 其实 需要注意 这里满不能截取 因为截取了 就不一定唯一 ...

  8. C#传递参数调用exe程序

    今天公司让我把Winform程序里的一块单独成一个exe文件,从原程序中打开新的exe程序,这就涉及到参数的传递,故来记录下传递参数到exe程序的方式 第一种方式 首先在程序A中添加引用using S ...

  9. Visual Studio中Debug与Release以及x86、x64、Any CPU的区别

    Visual Studio中Debug与Release的区别: 在Visual Studio中,编译模式有2种:Debug与Release.这也是默认的两种方式,在新建一个project的时候,就已经 ...

  10. Linux精简版系统安装网络配置问题解决

    参考文档:https://www.jianshu.com/p/7579a2ad1c92 通过链接中的文档配置linux系统的时候,在执行命令yum install net-tools的这里提示错误,是 ...