本文永久链接: https://esl.hohoweiya.xyz/notes/ICA/index.html

本笔记是ESL14.7节图14.42的模拟过程。第一部分将以ProDenICA法为例试图介绍ICA的整个计算过程;第二部分将比较ProDenICAFastICA以及KernelICA这种方法,试图重现图14.42。

ICA的模拟过程

生成数据

首先我们得有一组独立(ICA的前提条件)分布的数据\(S\)(未知),然后经过矩阵\(A_0\)混合之后得到实际的观测值\(X\),即

\[X= SA_0
\]

也可以写成

\[S=XA_0^{-1}
\]

用鸡尾酒酒会的例子来说就是,来自不同个体的说话声经过麦克风混合之后得到我们实际接收到的信号。假设有两组独立同分布的数据,分布都为n(对应图14.42中的编号),每组数据个数均为\(N=1024\),混合矩阵为A0,用R代码描述这一过程如下

library(ProDenICA)
p = 2
dist = "n"
N = 1024
A0 = mixmat(p)
s = scale(cbind(rjordan(dist,N),rjordan(dist,N)))
x = s %*% A0

最终我们得到观测值x

白化

在进行ICA时,也就是恢复\(X=S\mathbf A\)中的混合矩阵\(\mathbf A\),都会假设\(X\)已经白化得到\(\mathrm{Cov}(X)=\mathbf I\),而这个处理过程可以用SVD实现。对于中心化的\(X\),根据

\[X=\mathbf{UDV}^T= \sqrt{N}\mathbf U\frac{1}{\sqrt{N}}\mathbf{DV}^T=X^*\frac{1}{\sqrt{N}}\mathbf{DV}^T
\]

得到满足\(Cov(X^*)=\mathbf I\)的\(X^*\),则

\[S=XA_0^{-1}=X^*DV^TA_0^{-1}/\sqrt{N}
\]

于是经过这个变换之后,混合矩阵变为

\[A = DV^TA_0^{-1}/\sqrt{N}
\]

\[X^*=SA^T
\]

用R语言表示如下

x <- scale(x, TRUE, FALSE) # central
sx <- svd(x)
x <- sqrt(N) * sx$u # satisfy cov(x) = I
target <- solve(A0)
target <- diag(sx$d) %*% t(sx$v) %*% target/sqrt(N) # new mixing maxtrix

ProDenICA

细节不再展开,直接利用ProDenICA中的包进行计算

W0 <- matrix(rnorm(2*2), 2, 2)
W0 <- ICAorthW(W0)
W1 <- ProDenICA(x, W0=W0,trace=TRUE,Gfunc=GPois)$W

得到\(A\)的估计值W1

计算Amari距离

amari(W1, target)

比较两种算法

这一部分试图重现Fig. 14.42。

N = 1024

genData <- function(dist, N = 1024, p = 2){
# original sources
s = scale(cbind(rjordan(dist, N), rjordan(dist, N)))
# mixing matrix
mix.mat = mixmat(2)
# original observation
x = s %*% mix.mat # central x
x = scale(x, TRUE, FALSE)
# whiten x
xs = svd(x)
x = sqrt(N) * xs$u # new observations
mix.mat2 = diag(xs$d) %*% t(xs$v) %*% solve(mix.mat) / sqrt(N) # new mixing matrix
return(list(x = x, A = mix.mat2))
} res = array(NA, c(2, 18, 30))
for (i in c(1:18)){
for (j in c(1:30)){
data = genData(letters[i])
x = data$x
A = data$A
W0 <- matrix(rnorm(2*2), 2, 2)
W0 <- ICAorthW(W0)
# ProDenICA
W1 <- ProDenICA(x, W0=W0,trace=FALSE,Gfunc=GPois, restarts = 5)$W
# FastICA
W2 <- ProDenICA(x, W0=W0,trace=FALSE,Gfunc=G1, restarts = 5)$W
res[1, i, j] = amari(W1, A)
res[2, i, j] = amari(W2, A)
}
} res.mean = apply(res, c(1,2), mean)
#offset = apply(res, c(1,2), sd)
#offset = 0
#res.max = res.mean + offset/4
#res.min = res.mean - offset/4
res.max = apply(res, c(1,2), max)
res.min = apply(res, c(1,2), min) # plot
plot(1:18, res.mean[1, ], xlab = "Distribution", ylab = "Amari Distance from True A", xaxt = 'n', type = "o", col = "orange", pch = 19, lwd = 2, ylim = c(0, 0.5))
axis(1, at = 1:18, labels = letters[1:18])
lines(1:18, res.mean[2, ], type = "o", col = 'blue', pch = 19, lwd=2)
legend("topright", c("ProDenICA", "FastICA"), lwd = 2, pch = 19, col = c("orange", "blue"))
#for(i in 1:18)
#{
# for (j in 1:2)
# {
# color = c("orange", "blue")
# lines(c(i, i), c(res.min[j, i], res.max[j, i]), col = color[j], pch = 3)
# lines(c(i-0.2, i+0.2), c(res.min[j, i], res.min[j, i]), col = color[j], pch = 3)
# lines(c(i-0.2, i+0.2), c(res.max[j, i], res.max[j, i]), col = color[j], pch = 3)
# }
#}

得到下图

与图14.42的右图中的FastICAProDenICA的图象一致。

试图绘制出图中的变化范围,但由于书中并未指出变换范围是什么,尝试了标准差及最大最小值,但效果不是很好,这是可以继续优化的一个方面。下图是用四分之一的标准差作为其波动范围得到的

待完善

加入kernelICA

独立成分分析(ICA)的模拟实验(R语言)的更多相关文章

  1. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  2. 独立成分分析 ICA 原理及公式推导 示例

    独立成分分析(Independent component analysis) 前言 独立成分分析ICA是一个在多领域被应用的基础算法.ICA是一个不定问题,没有确定解,所以存在各种不同先验假定下的求解 ...

  3. ICA (独立成分分析)

    介绍 独立成分分析(ICA,Independent Component Correlation Algorithm)简介 X=AS X为n维观测信号矢量,S为独立的m(m<=n)维未知源信号矢量 ...

  4. Topographic ICA as a Model of Natural Image Statistics(作为自然图像统计模型的拓扑独立成分分析)

    其实topographic independent component analysis 早在1999年由ICA的发明人等人就提出了,所以不算是个新技术,ICA是在1982年首先在一个神经生理学的背景 ...

  5. PCA主成分分析 ICA独立成分分析 LDA线性判别分析 SVD性质

    机器学习(8) -- 降维 核心思想:将数据沿方差最大方向投影,数据更易于区分 简而言之:PCA算法其表现形式是降维,同时也是一种特征融合算法. 对于正交属性空间(对2维空间即为直角坐标系)中的样本点 ...

  6. 斯坦福ML公开课笔记15—隐含语义索引、神秘值分解、独立成分分析

    斯坦福ML公开课笔记15 我们在上一篇笔记中讲到了PCA(主成分分析). PCA是一种直接的降维方法.通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果. 本文继续PCA的话题, ...

  7. 独立成分分析(Independent Component Analysis)

    ICA是一种用于在统计数据中寻找隐藏的因素或者成分的方法.ICA是一种广泛用于盲缘分离的(BBS)方法,用于揭示随机变量或者信号中隐藏的信息.ICA被用于从混合信号中提取独立的信号信息.ICA在20世 ...

  8. Independent Components Analysis:独立成分分析

    一.引言 ICA主要用于解决盲源分离问题.需要假设源信号之间是统计独立的.而在实际问题中,独立性假设基本是合理的. 二.随机变量独立性的概念 对于任意两个随机变量X和Y,如果从Y中得不到任何关于X的信 ...

  9. ICA(独立成分分析)笔记

    ICA又称盲源分离(Blind source separation, BSS) 它假设观察到的随机信号x服从模型,其中s为未知源信号,其分量相互独立,A为一未知混合矩阵. ICA的目的是通过且仅通过观 ...

随机推荐

  1. bzoj 2726: [SDOI2012]任务安排

    Description 机 器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的 若干任务.从时刻0开始,这 ...

  2. JAVA NIO学习二:通道(Channel)与缓冲区(Buffer)

    今天是2018年的第三天,真是时光飞逝,2017年的学习计划还没有学习完成,因此继续开始研究学习,那么上一节我们了解了NIO,那么这一节我们进一步来学习NIO相关的知识.那就是通道和缓冲区.Java ...

  3. 《重新定义公司 - Google 是如何运营的》重点摘录

      赋能:创意时代的组织原则 未来企业的成功之道,是聚集一批聪明的创意精英,营造合适的氛围和支持环境,充分发挥他们的创造力,快速感知用户需求,愉快地创造响应的产品和服务.未来组织的最重要功能,那就是赋 ...

  4. 安装lamp代码

    tar -zxvf mysqladdUser mysql -s /sbin/nologinmv mysql /usr/local/mysql (改目录下直接存储bin docs等目录)mkdir -p ...

  5. String源码图

    String StringBuffer StringBuilder 均为对字符数组的操作. 实现了不同的接口,导致不同的覆写. 实现了同样的接口,适应不同的场景.

  6. 【原创】java NIO FileChannel 学习笔记 新建一个FileChannel

    首先使用FileChannel 的open方法获取一个FileChannel对象.下面这段代码是FileChannel中open方法的代码. public static FileChannel ope ...

  7. vmware一步步安装centos

    软件环境:vmware10.0破解版 centos版本:6.4 1.启动vmware,新建虚拟机,选择自定义安装 2,出现如下界面,保持默认,点击下一步 3.这个步骤要特别注意,选择“稍后安装”,我们 ...

  8. CSS3 radial-gradient 径向渐变属性 实现重复半圆角内边框

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA8gAAADiCAIAAAAd73mYAAAG+ElEQVR4nO3dQQrkNhCG0TntHGGu4U ...

  9. Oracle死锁情况

    ORACLE EBS操作某一个FORM界面,或者后台数据库操作某一个表时发现一直出于"假死"状态,可能是该表被某一用户锁定,导致其他用户无法继续操作 复制代码 代码如下: --锁表 ...

  10. 【Bootstrap简单用法】

    一.下载及使用 参考网站:http://www.bootcss.com/ 1.使用 BootCDN 提供的免费 CDN 加速服务(同时支持 http 和 https 协议) <!-- 最新版本的 ...