在信号处理中常常需要用到曲线拟合,这里介绍一下利用最小二乘拟合一般曲线的方法,并对滤掉信号中白噪声的方法作些介绍。

为了测试拟合算法的好坏,先模拟出一个信号作为检验算法的例子:

  1. 用白噪声产生模拟信号:

    对于理论信号y=y(x),一般可用rand(size(x))和randn(size(x))生成随即噪声信号,两者的区别在于rand生成的噪声信号都是正值,而randn生成的噪声信号则是正负跳跃分布的,所以randn作为白噪声信号,更符合实际情况:
f0=@(c,x)( (x>=0&x<c(1))*0 + (x>=c(1)&x<c(2))*c(3)/(c(2)-c(1)).*(x-c(1)) + (x>=c(2)&x<c(4)).*( (c(5)-c(3))/(c(4)-c(2))*(x-c(2))+c(3) ) + (x>=c(4)&x<c(6))*c(5)/(c(4)-c(6)).*(x-c(6)) + (x>=c(6))*0 );
disp('real c0');
c0=[1, 2, 1, 5, 2, 6]
x_int=0:0.002:10;
y_int=f0(c0,x_int);
%(x_int, y_int) is perfect zigzag signal
%sig=y_int+0.5*rand(size(x_int));
sig=y_int+0.5*randn(size(x_int));


  1. 最小二乘折线拟合

    考虑到需要拟合的函数是个分段的折线函数,需要首先建立含有固定参数的折线函数的数学模型,算法如下图:



    按照这个算法,用matlab搭建的代码如下:
% try zigzag fitting
f2=@(c,x)( (x>=0&x<c(1))*0 + (x>=c(1)&x<c(2))*c(3)/(c(2)-c(1)).*(x-c(1)) + (x>=c(2)&x<c(4)).*( (c(5)-c(3))/(c(4)-c(2))*(x-c(2))+c(3) ) + (x>=c(4)&x<c(6))*c(5)/(c(4)-c(6)).*(x-c(6)) + (x>=c(6))*0 );
c0=[1.1, 1.5, 1.8, 5.4, 2.5, 5.6];
c_fit=nlinfit(x_int,sig,f2,c0);
y2=f2(c_fit,x_int);
figure();
plot(x_int,sig,'blue');
hold on
plot(x_int,y2,'red --','linewidth',2);
legend('sig','zigzag fitting');



真实参数:1,2,1,5,2,6

拟合参数:1.0237,2.06,1.0107,4.9479,2.1101,6.0005

可以看到,拟合的参数多少和真实的参数存在一些差异,但是已经非常接近。

  1. 优化:傅立叶变换降噪

    如果要进一步提高拟合的精度,需要设法降低白噪声的干扰。因为白噪声是一种宽谱的干扰,所以常用的带通滤波处理是不可行的,这里可以考虑对信号进行傅立叶变换,滤掉其中强度较弱的白噪声频域成分。
Fs=1/(x_int(2)-x_int(1));
nfft=length(sig);
sig_fft_comp=fft(sig);
sig_fft_real=2*abs(sig_fft_comp)/nfft;
% adjust the distribution of spectrum according to double frequency direction
sig_fft_real_adjust=[sig_fft_real(round(nfft/2+1):end),sig_fft_real(1:round(nfft/2))];
f_double=linspace(-Fs/2,Fs/2,nfft);
% apply the A(f) strength filter
Af_level=0.01;
Af_lim=Af_level*max(sig_fft_real);
i_fd=find(sig_fft_real<Af_lim);
sig_fft_fit=sig_fft_comp;
sig_fft_fit(i_fd)=0;
figure();
plot(f_double,sig_fft_real_adjust);
xlabel('f(Hz)');
ylabel('A(f)');
xlim([f_double(1),f_double(end)]);
hold on
plot(f_double,Af_lim*ones(size(f_double)),'red --','linewidth',1);
legend('spectrum','Af limit');
% reconstruct the signal with filtered spectrum
sig_fit=ifft(sig_fft_fit);
% perform fitting for the A filtered signal
disp('fit c0 after A filter');
c_fit3=nlinfit(x_int,sig_fit,f2,c0)
y3=f2(c_fit3,x_int);
% compare signal and fitted signal
figure();
plot(x_int,sig,'black',x_int,sig_fit,'red');
hold on
plot(x_int,y3,'green --','linewidth',2);
legend('sig','Fourier fit','zigzag fit');

傅立叶降噪后结果如下:



此时算得的拟合系数是:
1.0677,1.8680, 0.9665,5.0140,1.9736,5.9895
这比降噪前的效果稍好了一些,更贴近与真实的折线系数。但是编程的复杂度上升了很多,在对拟合的精度要求不是太高的情况下,可以不用作傅立叶降噪的处理。

  1. 补充:matlab多项式拟合函数(polyfit)

    [p,s,mu]=polyfit(x,y,n)

    x,y是被拟合的离散曲线点,n是需要拟合的多项式次数(默认的多项式是幂级数形式的),其中p是个多项式各次项的系数,是按照指数从高到低排列的。mu(1)是y的平均值,mu(2)是单位标准偏差(unit standard deviation,可缩写成STD)

    \(SDT=\frac{y-mean(y)}{\sigma}\)

Matlab: 白噪声与曲线拟合的更多相关文章

  1. Matlab单一变量曲线拟合-cftool

    2.启动曲线拟合工具箱>cftool 3.进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口:(2)利用X data和Y data的下 ...

  2. 基于MATLAB的多项式数据拟合方法研究-毕业论文

    摘要:本论文先介绍了多项式数据拟合的相关背景,以及对整个课题做了一个完整的认识.接下来对拟合模型,多项式数学原理进行了详细的讲解,通过对文献的阅读以及自己的知识积累对原理有了一个系统的认识.介绍多项式 ...

  3. MATLAB中白噪声的产生

    rand产生的是[0,1]上的均匀分布的随机序列randn产生均值为0,方差为1的高斯随机序列,也就是白噪声序列 rand产生的是均匀分布白噪声序列randn产生的是正态分布的白噪声序列 MATLAB ...

  4. MATLAB中白噪声的WGN和AWGN函数的使用

    MATLAB中白噪声的WGN和AWGN函数的使用如下: MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN.WGN用于产生高斯白噪声,AWGN则用于在某一 信号 ...

  5. Matlab的曲线拟合工具箱CFtool使用简介

    http://phylab.fudan.edu.cn/doku.php?id=howtos:matlab:mt1-5 一. 单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ...

  6. Matlab实现加性高斯白噪声信道(AWGN)下的digital调制格式识别分类

    Matlab实现加性高斯白噪声信道(AWGN)下的digital调制格式识别分类 内容大纲 加性高斯白噪声信道(AWGN)下的digital调制格式识别分类 (1. PSK; 2. QPSK; 3.8 ...

  7. [转] Matlab中给信号加高斯白噪声的方法

    MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN.WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声. 1. WGN:产生高斯白噪声 y = ...

  8. matlab 曲线拟合小记

    在matlab中经常需要对数据进行曲线拟合,如最常见的多项式拟合,一般可以通过cftool调用曲线拟合工具(curve fit tool),通过图形界面可以很方便的进行曲线拟合,但是有些时候也会遇到不 ...

  9. [ZZ] MATLAB曲线拟合

    MATLAB曲线拟合 http://blog.sina.com.cn/s/blog_5db2286f0100enlo.html MATLAB软件提供了基本的曲线拟合函数的命令: 多项式函数拟合:  a ...

随机推荐

  1. 【java8】慎用java8的foreach循环

    虽然java8出来很久了,但是之前用的一直也不多,最近正好学习了java8,推荐一本书还是不错的<写给大忙人看的javase8>.因为学习了Java8,所以只要能用到的地方都会去用,尤其是 ...

  2. ArrayList实现分组功能

    这边只用2个属性来进行分组 定义Object有key与value属性 按照key的不同对于arrayList进行分组 List<Object> tempList=new ArrayList ...

  3. AVL树(平衡二叉查找树)

    首先要说AVL树,我们就必须先说二叉查找树,先介绍二叉查找树的一些特性,然后我们再来说平衡树的一些特性,结合这些特性,然后来介绍AVL树. 一.二叉查找树 1.二叉树查找树的相关特征定义 二叉树查找树 ...

  4. PropertyGrid自定义控件

    PropertyGrid是一个很强大的控件,使用该控件做属性设置面板的一个好处就是你只需要专注于代码而无需关注UI的呈现,PropertyGrid会默认根据变量类型选择合适的控件显示.但是这也带来了一 ...

  5. Java对字符串进行的操作

    本篇总结归纳对字符串或数组进行相关操作问题 数组倒序输出 查找字符串中第一次重复的字符 查找字符串中第一次没有重复的字符 删除字符串中重复的元素 倒序输出问题 第一种:对于数组 public int[ ...

  6. Python3实现简单的http server

    前端的开发的html给我们的时候,由于内部有一些ajax请求的.json的数据,需要在一个web server中查看,每次放到http服务器太麻烦.还是直接用python造一个最方便. 最简单的,直接 ...

  7. CentOS 7 for ARM 安装一键Lnmp失败

    背景 前面把树莓派装上了CentOS 7,趁着国庆放假回来赶紧把服务端环境搭起来,为了方便就准备用一键lnmp快速部署一个,结果死活安装不成功... 报错 按照以往的经验进行安装,在我的小树莓派上安装 ...

  8. node.js实现简单的登录注册页面

    首先需要新建四个文件 一个服务器js 一个保存数据的txt 一个登陆.一个注册页面html 1.注册页面 <!DOCTYPE html> <html lang="en&qu ...

  9. js数组及数组应用(冒泡和二分,遍历输出)

    一.定义:1)var arr=new Array(); 加数据:arr[0]=1; 2)定义同时赋值:var arr=new Array(1,2,3,4,5); 3)调用:var arr=new Ar ...

  10. Webstorm 激活破解

    2017-06-15更新 之前都是使用2017.2.27的方法,版本是2017.1.1,还没提示过期,但是根据评论说这个链接已经失效了,评论也给出了个新地址:http://idea.iteblog.c ...