The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward is going to arrange the order of the problems. As we know, the arrangement will have a great effect on the result of the contest. For example, it will take more time to finish the first problem if the easiest problem hides in the middle of the problem list.

There are N problems in the contest. Certainly, it's not interesting if the problems are sorted in the order of increasing difficulty. Edward decides to arrange the problems in a different way. After a careful study, he found out that the i-th problem placed in the j-th position will add Pij points of "interesting value" to the contest.

Edward wrote a program which can generate a random permutation of the problems. If the total interesting value of a permutation is larger than or equal to M points, the permutation is acceptable. Edward wants to know the expected times of generation needed to obtain the first acceptable permutation.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers N (1 <= N <= 12) and M (1 <= M <= 500).

The next N lines, each line contains N integers. The j-th integer in the i-th line is Pij (0 <= Pij <= 100).

Output

For each test case, output the expected times in the form of irreducible fraction. An irreducible fraction is a fraction in which the numerator and denominator are positive integers and have no other common divisors than 1. If it is impossible to get an acceptable permutation, output "No solution" instead.

Sample Input

2
3 10
2 4 1
3 2 2
4 5 3
2 6
1 3
2 4

Sample Output

3/1
No solution 题目大意:给出n个物品,将他们排列,第i个物品放在j位置可获得p[i][j]的价值,求总排列数除以总价值大于m的排列数,结果以最简分数的形式输出。 思路: 递推题目,f[i][j][k]表示按顺序取,当前取到第i个物品时,状态为j,总价值为j的时候的方案数。递推方程,f[i+1][j+(2<<(t-1))][k+a[i,t]]+=f[i][j][k]。
 /*
* Author: Joshua
* Created Time: 2014/5/17 14:31:42
* File Name: b.cpp
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<ctime>
#include<utility>
#define M0(x) memset(x, 0, sizeof(x))
#define MP make_pair
#define Fi first
#define Se second
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define red(i, a, b) for (int i = (a); i >= (b); --i)
#define PB push_back
#define Inf 0x3fffffff
#define eps 1e-8 #define b(i) (1<<i)
typedef long long LL;
using namespace std; int f[][b()][],p[];
int a[][];
int n,m; int gcd(int aa,int bb)
{
if (bb==) return aa;
else return gcd(bb,aa%bb);
} int main()
{
int tt;
int cc;
scanf("%d",&tt);
while (tt>)
{
tt--;
scanf("%d%d",&n,&m);
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
scanf("%d",&a[i][j]);
M0(f);
int temp;
int gg,vv;
f[][][]=;
gg=;
vv=;
for (int i=;i<n;i++)
{
gg=-gg;
vv=-vv;
M0(f[gg]);
for (int j=;j<=(<<n)-;j++)
{
cc=;
for (int t=;t<=n;t++)
if ((j & b(t-)) > ) cc++;
if (cc!=i) continue;
for (int t=;t<=n;t++)
if ((b(t-) & j)==)
for (int k=;k<=m;k++)
if (f[vv][j][k]>)
{
temp=k+a[i+][t];
if (temp>m) temp=m;
f[gg][ j|b(t-) ][temp]+=f[vv][j][k];
}
}
}
int sum=f[gg][b(n)-][m];
if (sum>)
{
int ss=;
for (int i=;i<=n;i++)
ss*=i;
int gc=gcd(sum,ss);
printf("%d/%d\n",ss/gc,sum/gc);
}
else
{
printf("No solution\n");
}
}
return ;
}

因为空间不够所以采用滚动数组,然后超时了所以要尽量把无效状态判掉。时间看起来是(2^(2n)*m*n),判无效状态后为(2^n*m*n)。其实我这是正着推,看同学反着推好像更好写且不用滚动数组和判无效,果然我还是写得太丑了。

zoj3777 Problem Arrangement的更多相关文章

  1. ACM学习历程—ZOJ3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  2. zoj3777 Problem Arrangement(状压dp,思路赞)

    The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem setter, Edward i ...

  3. B - Problem Arrangement ZOJ - 3777

    Problem Arrangement ZOJ - 3777 题目大意:有n道题,第i道题第j个做可以获得Pij的兴趣值,问至少得到m兴趣值的数学期望是多少,如果没有的话就输出No solution. ...

  4. zoj 3777 Problem Arrangement(壮压+背包)

    Problem Arrangement Time Limit: 2 Seconds      Memory Limit: 65536 KB The 11th Zhejiang Provincial C ...

  5. ZOJ 3777 - Problem Arrangement - [状压DP][第11届浙江省赛B题]

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 Time Limit: 2 Seconds      Me ...

  6. ACM学习历程—ZOJ 3777 Problem Arrangement(递推 && 状压)

    Description The 11th Zhejiang Provincial Collegiate Programming Contest is coming! As a problem sett ...

  7. 2014 Super Training #4 B Problem Arrangement --状压DP

    原题:ZOJ 3777  http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:给每个题目安排在每个位置的value ...

  8. zoj 3777 Problem Arrangement

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5264 题意:给出n道题目以及每一道题目不同时间做的兴趣值,让你求出所有做题顺序 ...

  9. ZOJ 3777 B - Problem Arrangement 状压DP

    LINK:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3777 题意:有N(\( N <= 12 \))道题,排顺序 ...

随机推荐

  1. Openfire3.9.1+jdk1.7导入到eclipse中

    Openfire3.9.1+jdk1.7导入到eclipse中 写这篇文章,也是记录一下自己几晚上的辛苦,因为作为新手在网上看了很多的资料,但是按照他们的我总是出不来,跟他们描述的不一致,可能是环境问 ...

  2. (转)log4j(四)——如何控制不同风格的日志信息的输出?

    一:测试环境与log4j(一)——为什么要使用log4j?一样,这里不再重述 1 老规矩,先来个栗子,然后再聊聊感受 import org.apache.log4j.*; //by godtrue p ...

  3. IT软件管理人员的职业路线(从技术经理到总经理) - CEO之公司管理经验谈

    技术.业务和管理永远是工作的一个话题.笔者今天就根据自身的经验,通过这三个方面介绍下IT软件管理人员的职业路线.前面写过一个文(IT软件技术人员的职位路线(从程序员到技术总监) - 部门管理经验谈), ...

  4. linux下使用scp远程传输自动输入密码

    由于需要将A服务器的文件 远程传输到B服务器 但是scp命令每次都要手动输入密码 这样脚本执行太繁琐,所以讲A服务器和B服务器互信即可,具体操作如下: 首先在A服务器配置: mkdir -p ~/.s ...

  5. ajax分页效果、分类联动、搜索功能

    一.使用smarty+ajax+php实现无刷新分页效果 效果图 <!DOCTYPE html> <html lang="en"> <head> ...

  6. Java基础之TCP与UDP

    OSI 7层参考模型 物理层 --> 数据链路层 --> 网络层 --> 传输层 --> 会话层 --> 表示层 --> 应用层 按此顺序称为拆包,反之为封包. T ...

  7. 记Angular与Django REST框架的一次合作(2):前端组件化——Angular

    注:这是这个系列的第二部分,主要集中在Angular的使用方面.之前使用过AngularJS(Angular 1.x),混在Django的模板中使用,这些页面一般完全是结果展示页.在有Django表单 ...

  8. dotnet core部署方式两则:CLI、IIS

    最近在使用dotnet core研究整个开发过程,使用下面两种方式部署: 一,使用 dotnet run 命令运行 在项目路径,shift+右键,选择 “在此处打开命令窗口”,在CMD窗口中运行“do ...

  9. NYOJ--139--我排第几个(康托展开)

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl"12个字符,将其所有的排列中按字典序排列,给出任意一 ...

  10. java中使用poi导出excel表格数据并且可以手动修改导出路径

    在我们开发项目中,很多时候会提出这样的需求:将前端的某某数据以excel表格导出,今天就给大家写一个简单的模板. 这里我们选择使用poi导出excel: 第一步:导入需要的jar包到 lib 文件夹下