LSA和pLSA的比较
Comparison
| LSA | pLSA | |
|---|---|---|
| 1. Theoretical background | Linear Algebra | Probabilities and Statistics |
| 2. Objective function | Frobenius norm | Likelihood function |
| 3. Polysemy | No | Yes |
| 4. Folding-in | Straightforward | Complicated |
1. LSA stems from Linear Algebra as it is nothing more than a Singular Value Decomposition. On the other hand, pLSA has a strong probabilistic grounding (latent variable models).
2. SVD is a least squares method (it finds a low-rank matrix approximation that minimizes the Frobenius norm of the difference with the original matrix). Moreover, as it is well known in Machine Learning, the least squares solution corresponds to the Maximum Likelihood solution when experimental errors are gaussian. Therefore, LSA makes an implicit assumption of gaussian noise on the term counts. On the other hand, the objective function maximized in pLSA is the likelihood function of multinomial sampling.
The values in the concept-term matrix found by LSA are not normalized and may even contain negative values. On the other hand, values found by pLSA are probabilities which means they are interpretable and can be combined with other models.
Note: SVD is equivalent to PCA (Principal Component Analysis) when the data is centered (has zero-mean).
3. Both LSA and pLSA can handle synonymy but LSA cannot handle polysemy, as words are defined by a unique point in a space.
4. LSA and pLSA analyze a corpus of documents in order to find a new low-dimensional representation of it. In order to be comparable, new documents that were not originally in the corpus must be projected in the lower-dimensional space too. This is called “folding-in”. Clearly, new documents folded-in don’t contribute to learning the factored representation so it is necessary to rebuild the model using all the documents from time to time.
In LSA, folding-in is as easy as a matrix-vector product. In pLSA, this requires several iterations of the EM algorithm.
LSA和pLSA的比较的更多相关文章
- LSA,pLSA原理及其代码实现
一. LSA 1. LSA原理 LSA(latent semantic analysis)潜在语义分析,也被称为 LSI(latent semantic index),是 Scott Deerwest ...
- 文本情感分析(一):基于词袋模型(VSM、LSA、n-gram)的文本表示
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习 ...
- LDA
2 Latent Dirichlet Allocation Introduction LDA是给文本建模的一种方法,它属于生成模型.生成模型是指该模型可以随机生成可观测的数据,LDA可以随机生成一篇由 ...
- bow lsa plsa
Bag-of-Words (BoW) 模型是NLP和IR领域中的一个基本假设.在这个模型中,一个文档(document)被表示为一组单词(word/term)的无序组合,而忽略了语法或者词序的部分.B ...
- 一口气讲完 LSA — PlSA —LDA在自然语言处理中的使用
自然语言处理之LSA LSA(Latent Semantic Analysis), 潜在语义分析.试图利用文档中隐藏的潜在的概念来进行文档分析与检索,能够达到比直接的关键词匹配获得更好的效果. LSA ...
- Latent semantic analysis note(LSA)
1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwes ...
- NLP —— 图模型(三)pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)模型
LSA(Latent semantic analysis,隐性语义分析).pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Late ...
- DL4NLP——词表示模型(一)表示学习;syntagmatic与paradigmatic两类模型;基于矩阵的LSA和GloVe
本文简述了以下内容: 什么是词表示,什么是表示学习,什么是分布式表示 one-hot representation与distributed representation(分布式表示) 基于distri ...
- [IR] Concept Search and PLSA
[Topic Model]主题模型之概率潜在语义分析(Probabilistic Latent Semantic Analysis) 感觉LDA在实践中的优势其实不大,学好pLSA才是重点 阅读笔记 ...
随机推荐
- ViewPager使用记录1——展示固定数据
ViewPager是v4支持库中的一个控件,相信几乎所有接触Android开发的人都对它不陌生.之所以还要在这里翻旧账,是因为我在最近的项目中有多个需求用到了它,觉得自己对它的认识不够深刻.我计划从最 ...
- Object类—复写equals方法,hashCode方法,toString方法
Object:所有类的根类. Object是不断抽取而来,具备着所有对象都具备的共性内容. class Person extends Object { private int age; Person( ...
- ASP.NET MVC 学习笔记 1
1. 什么是ASP.Net MVC ASP.Net MVC是一种开发Web应用程序的工具(is a web application development framework),采用Model-Vie ...
- OpenSCAD 建模:相框
下载地址:https://github.com/ZhangGaoxing/openscad-models/tree/master/PhotoFrame 代码: module bottom(){ dif ...
- win10 uwp 分治法
其实我想说Path,因为最近在做一个简单的分治. 算法涉及到了一个平面几何的知识.就是三角形p1p2p3的面积等于以下行列式的二分之一: 而且当点P3 在射线P1P2的左侧的时候,表达式为正,右侧表达 ...
- event模拟数据库链接
from threading import Thread,Event,currentThread import time e = Event() def conn_mysql(): count = 1 ...
- VIM文本替换命令
在VIM中进行文本替换: 1. 替换当前行中的内容: :s/from/to/ (s即substitude) :s/from/to/ : 将当前行中的 ...
- Java中数组的遍历
(I)标准for循环遍历数组 例如代码片段: int [] nums = new int [] {0,1,2,3,4,5,6,7,8,9}; for(int i=0;i<11;i++){ Sys ...
- CentOS 6.5 + Nginx 1.8.0 + PHP 5.6(with PHP-FPM) 负载均衡源码安装
CentOS 6.5 + Nginx 1.8.0 + PHP 5.6(with PHP-FPM) 负载均衡源码安装 http://www.cnblogs.com/ppoo24/p/4918288.ht ...
- Chrome等浏览器下出现net::ERR_BLOCKED_BY_CLIENT的解决办法
当我们在做开发时,调试页面图片会出现部分图片无法正常显示,并且确认图片的地址正确: 按F12 Debug查看报错原因,提示net::ERR_BLOCKED_BY_CLIENT错误,但当我们点击图片地址 ...