摘要:池化层的主要目的是降维,通过滤波器映射区域内取最大值、平均值等操作。

均值池化:tf.nn.avg_pool(input,ksize,strides,padding)

最大池化:tf.nn.max_pool(input,ksize,strides,padding)

input:通常情况下是卷积层输出的featuremap,shape=[batch,height,width,channels]

               

  假定这个矩阵就是卷积层输出的featuremap(2通道输出)  他的shape=[1,4,4,2]

ksize:池化窗口大小    shape=[batch,height,width,channels]    比如[1,2,2,1]

strides: 窗口在每一个维度上的移动步长 shape=[batch,stride,stride,channel]  比如[1,2,2,1]

padding:“VALID”不填充  “SAME”填充0

返回:tensor        shape=[batch,height,width,channels]

上图是采用的最大池化,取红色框内最大的一个数。

import tensorflow as tf
feature_map = tf.constant([
[[0.0,4.0],[0.0,4.0],[0.0,4.0],[0.0,4.0]],
[[1.0,5.0],[1.0,5.0],[1.0,5.0],[1.0,5.0]],
[[2.0,6.0],[2.0,6.0],[2.0,6.0],[2.0,6.0]] ,
[[3.0,7.0],[3.0,7.0],[3.0,7.0],[3.0,7.0]]
])
feature_map = tf.reshape(feature_map,[1,4,4,2])##两通道featuremap输入 ##定义池化层
pooling = tf.nn.max_pool(feature_map,[1,2,2,1],[1,2,2,1],padding='VALID')##池化窗口2*2,高宽方向步长都为2,不填充
pooling1 = tf.nn.max_pool(feature_map,[1,2,2,1],[1,1,1,1],padding='VALID')##池化窗口2*2,高宽方向步长都为1,不填充
pooling2 = tf.nn.avg_pool(feature_map,[1,4,4,1],[1,1,1,1],padding='SAME')##池化窗口4*4,高宽方向步长都为1,填充
pooling3 = tf.nn.avg_pool(feature_map,[1,4,4,1],[1,4,4,1],padding='SAME')##池化窗口4*4,高宽方向步长都为4,填充
##转置变形(详细解释参考另一篇博文)
tran_reshape = tf.reshape(tf.transpose(feature_map),[-1,16])
pooling4 = tf.reduce_mean(tran_reshape,1) ###对行值求平均
with tf.Session() as sess:
print('featuremap:\n',sess.run(feature_map))
print('*'*30)
print('pooling:\n',sess.run(pooling))
print('*'*30)
print('pooling1:\n',sess.run(pooling1))
print('*'*30)
print('pooling2:\n',sess.run(pooling2))
print('*'*30)
print('pooling3:\n',sess.run(pooling3))
print('*'*30)
print('pooling4:\n',sess.run(pooling4))
'''
输出结果:
featuremap:
[[[[ 0. 4.]
[ 0. 4.]
[ 0. 4.]
[ 0. 4.]] [[ 1. 5.]
[ 1. 5.]
[ 1. 5.]
[ 1. 5.]] [[ 2. 6.]
[ 2. 6.]
[ 2. 6.]
[ 2. 6.]] [[ 3. 7.]
[ 3. 7.]
[ 3. 7.]
[ 3. 7.]]]]
******************************
pooling:
[[[[ 1. 5.]
[ 1. 5.]] [[ 3. 7.]
[ 3. 7.]]]]
******************************
pooling1:
[[[[ 1. 5.]
[ 1. 5.]
[ 1. 5.]] [[ 2. 6.]
[ 2. 6.]
[ 2. 6.]] [[ 3. 7.]
[ 3. 7.]
[ 3. 7.]]]]
******************************
pooling2:
[[[[ 1. 5. ]
[ 1. 5. ]
[ 1. 5. ]
[ 1. 5. ]] [[ 1.5 5.5]
[ 1.5 5.5]
[ 1.5 5.5]
[ 1.5 5.5]] [[ 2. 6. ]
[ 2. 6. ]
[ 2. 6. ]
[ 2. 6. ]] [[ 2.5 6.5]
[ 2.5 6.5]
[ 2.5 6.5]
[ 2.5 6.5]]]]
******************************
pooling3:
[[[[ 1.5 5.5]]]]
******************************
pooling4:
[ 1.5 5.5] '''

池化层常用函数及参数

现在我们对代码中的内容加以解释:

padding的规则

  •   padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例)

         

    输出宽度:output_width = (in_width-filter_width+1)/strides_width  =(5-3+1)/2=1.5【向上取整=2】

    输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/2=1.5【向上取整=2】

    输出的形状[1,2,2,1]

        

    

import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1])) ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1])) ##1个卷积核对应1个featuremap输出 op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding='VALID') ##步长2,VALID不补0操作 init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
# print('input:\n', sess.run(input))
# print('filter:\n', sess.run(filter))
print('op:\n',sess.run(op)) ##输出结果
'''
[[[[ 2.]
[-1.]] [[-1.]
[ 0.]]]]
'''

tensorflow中实现(步长2)

    如果strides=[1,3,3,1]的情况又是如何呢?   

    输出宽度:output_width  = (in_width-filter_width+1)/strides_width  =(5-3+1)/3=1

    输出高度:output_height = (in_height-filter_height+1)/strides_height  =(5-3+1)/3=1

    输出的形状[1,1,1,1],因此输出的结果只有一个

    

    

import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1])) ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1])) ##1个卷积核对应1个featuremap输出 op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding='VALID') ##步长2,VALID不补0操作 init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
# print('input:\n', sess.run(input))
# print('filter:\n', sess.run(filter))
print('op:\n',sess.run(op)) ##输出结果
'''
op:
[[[[ 2.]]]]
'''

tensorflow中实现(步长3)

    padding=‘SAME’时,输出的宽度和高度的计算公式(下图gif为例)

    

    输出宽度:output_width  = in_width/strides_width=5/2=2.5【向上取整3】

    输出高度:output_height = in_height/strides_height=5/2=2.5【向上取整3】

    则输出的形状:[1,3,3,1]

    那么padding补0的规则又是如何的呢?【先确定输出形状,再计算补多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((3-1)*2+3-5,0)=2

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((3-1)*2+3-5,0)=2

    pad_top = pad_height/2=1

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=1

    pad_right = pad_width-pad_left=1

    

    

import tensorflow as tf
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1])) ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1])) ##1个卷积核对应1个featuremap输出 op = tf.nn.conv2d(input,filter,strides=[1,2,2,1],padding='SAME') ##步长2,VALID不补0操作 init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
# print('input:\n', sess.run(input))
# print('filter:\n', sess.run(filter))
print('op:\n',sess.run(op)) ##输出结果
'''
op:
[[[[ 3.]
[ 1.]
[-4.]] [[ 3.]
[ 0.]
[-3.]] [[ 4.]
[-1.]
[-3.]]]]
'''

SAME步长2

    如果步长为3呢?补0的规则又如何?

    输出宽度:output_width  = in_width/strides_width=5/3=2

    输出高度:output_height = in_height/strides_height=5/3=2

    则输出的形状:[1,2,2,1]

    那么padding补0的规则又是如何的呢?【先确定输出形状,再计算补多少0】

    pad_width = max((out_width-1)*strides_width+filter_width-in_width,0)=max((2-1)*3+3-5,0)=1

    pad_height = max((out_height-1)*strides_height+filter_height-in_height,0)=max((2-1)*3+3-5,0)=1

    pad_top = pad_height/2=0【向下取整】

    pad_bottom = pad_height-pad_top=1

    pad_left = pad_width/2=0【向下取整】

    pad_right = pad_width-pad_left=1

        

    

import tensorflow as tf
print(3/2)
image = [0,1.0,1,2,2,0,1,1,0,0,1,1,0,1,0,1,0,1,1,1,0,2,0,1,0]
input = tf.Variable(tf.constant(image,shape=[1,5,5,1])) ##1通道输入
fil1 = [-1.0,0,1,-2,0,2,-1,0,1]
filter = tf.Variable(tf.constant(fil1,shape=[3,3,1,1])) ##1个卷积核对应1个featuremap输出 op = tf.nn.conv2d(input,filter,strides=[1,3,3,1],padding='SAME') ##步长2,VALID不补0操作 init = tf.global_variables_initializer() with tf.Session() as sess:
sess.run(init)
# print('input:\n', sess.run(input))
# print('filter:\n', sess.run(filter))
print('op:\n',sess.run(op)) ##输出结果
'''
op:
[[[[ 2.]
[-3.]] [[ 0.]
[-3.]]]]
'''

SAME步长3

    这里借用的卷积中的padding规则,在池化层中的padding规则与卷积中的padding规则一致   

CNN之池化层tf.nn.max_pool | tf.nn.avg_pool | tf.reduce_mean | padding的规则解释的更多相关文章

  1. 深入解析CNN pooling 池化层原理及其作用

    原文地址:https://blog.csdn.net/CVSvsvsvsvs/article/details/90477062 池化层作用机理我们以最简单的最常用的max pooling最大池化层为例 ...

  2. tensorflow的卷积和池化层(二):记实践之cifar10

    在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tenso ...

  3. TensorFlow 池化层

    在 TensorFlow 中使用池化层 在下面的练习中,你需要设定池化层的大小,strides,以及相应的 padding.你可以参考 tf.nn.max_pool().Padding 与卷积 pad ...

  4. 【深度学习篇】--神经网络中的池化层和CNN架构模型

    一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...

  5. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  6. 第十三节,使用带有全局平均池化层的CNN对CIFAR10数据集分类

    这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进 ...

  7. CNN学习笔记:池化层

    CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...

  8. ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层

    来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter ...

  9. CNN中卷积层 池化层反向传播

    参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...

随机推荐

  1. python pickle模块的用法

    pickle用于python特有的类型,和python的数据类型间进行转换,提供四个功能 dumps,dump,loads,load. pickle 的用法 #pickle.dumps 将数据通过特殊 ...

  2. python学习第四十三天生成器和next()关联

    我们在用列表生成式的时候,如果有一百万的数据,内存显然不够用,这是python想要什么数据,就生产什么数据给你,就产生了生成器,下面简单讲述生成器用法 1,生成器的用法 a=([a*a for a i ...

  3. 【推荐系统】知乎live入门4.排序

    参考链接 [推荐系统]知乎live入门 目录 1. 概述 2. 排序模型建模 3. 排序总结 ===================================================== ...

  4. iOS 应用配置及证书生成教程

    简介 首先你需要有一个苹果的开发者帐号,一台苹果电脑.点击查看苹果开发者账号注册流程 本教程需完成应用信息配置,包括如下两个基本配置: AppID Bundle ID 同时,生成 如下三个证书文件及对 ...

  5. oralce 汇编02

    Assembler Directives .align integer, padThe .align directive causes the next data generated to be al ...

  6. voc数据集坐标,coco数据集坐标

    voc,如上图 x1 ,y1 ,x4, y4    bbox的坐标格式是,x,y的最大最小值,也就是box的左上角和右下角的坐标 coco x,y,w,h       box左上角的坐标以及宽.高 图 ...

  7. Linux下git安装配置

    一.Linux下git安装配置 2013-07-28 20:32:10|  分类: 默认分类 |  标签:linux  git  server  |举报|字号 订阅     http://abomby ...

  8. kafka docker-composer.yml

    使用Docker快速搭建Kafka开发环境 表现力 关注  0.5 2018.05.04 03:00* 字数 740 阅读 25240评论 1喜欢 11 Docker在很多时候都可以帮助我们快速搭建想 ...

  9. html中的点击事件

    使用点击事件写一个计数器. onmouseup : 当鼠标按下,松开的时候触发事件. onmousedown: 当鼠标按下的时候触发事件.onMouseOver: 鼠标经过时触发 onMouseOut ...

  10. 【leetcode】1028. Recover a Tree From Preorder Traversal

    题目如下: We run a preorder depth first search on the root of a binary tree. At each node in this traver ...