1.MyWordCount类

注意:

1.本机+测试,两个注释都放开

2.本机跑集群,要开异构平台为true

3.集群跑,把两个注释都注起来,然后在集群上面跑

package com.littlepage.wc;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import java.io.IOException; public class MyWordCount {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.读取配置
Configuration conf=new Configuration(true);
//设定本地环境运行,不进行集群运行
// conf.set("mapreduce.framework.name","local");
//设定异构平台
// conf.set("mapreduce.app-submission.cross-platform","true");
//2.设定Job
Job job=Job.getInstance(conf);
//3.设定Job执行的类
job.setJarByClass(MyWordCount.class);
//4.设定JobName
job.setJobName("SteveYu's word count");
//5.设定输入path
Path infile=new Path("/data/wc/input");
TextInputFormat.addInputPath(job,infile);
//6.设定输出path
Path outfile=new Path("/data/wc/loveloveOutput");
if(outfile.getFileSystem(conf).exists(outfile)) outfile.getFileSystem(conf).delete(outfile,true);
TextOutputFormat.setOutputPath(job,outfile);
//7.设定MapperClass和ReduceClass
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//8.设定输出的Key,Value格式
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//9.等待程序完成
job.waitForCompletion(true);
}
}

2.WordCountMapper类

作用:

定义一个拆分文本的功能,将Mapper进行拆分成key, value的形式

package com.littlepage.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException;
import java.util.StringTokenizer; public class WordCountMapper extends Mapper<Object,Text,Text,IntWritable> {
private final static IntWritable one=new IntWritable();
private Text word=new Text(); @Override
protected void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr=new StringTokenizer(value.toString());
while(itr.hasMoreTokens()){
word.set(itr.nextToken());
context.write(word,one);
}
}
}

3.WordCountReducer类

作用:

进行第二次映射计算

package com.littlepage.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
private IntWritable result=new IntWritable();
//相同的key为一组 ,这一组数据调用一次reduce
//hello 1 @Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum=;
for (IntWritable val:values) {
sum+=val.get();
}
result.set(sum);
context.write(key,result);
}
}

4.单机跑可能出现的问题

1.hadoop必须解压

2.hadoop必须配置HADOOP_HOME以及环境变量

3.hadoop必须将core-site.xml放进resources文件夹里面,并且文件夹得标识为source文件夹

4.hadoop的bin在windows必须粘贴为windows版本,并且,我们需要把hadoop.dll复制到system32文件夹内,因为system32是存放系统小工具的一个文件夹

MapReduce计数程序(自主复习)的更多相关文章

  1. MapReduce TopN(自主复习)

    1.MyTopN  主程序 package com.littlepage.topn; import org.apache.hadoop.conf.Configuration; import org.a ...

  2. Hadoop分布环境搭建步骤,及自带MapReduce单词计数程序实现

    Hadoop分布环境搭建步骤: 1.软硬件环境 CentOS 7.2 64 位 JDK- 1.8 Hadoo p- 2.7.4 2.安装SSH sudo yum install openssh-cli ...

  3. [Hadoop in Action] 第4章 编写MapReduce基础程序

    基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...

  4. 第一章 flex单词计数程序

    学习Flex&Bison目标, 读懂SQLite中SQL解析部分代码 Flex&Bison简介Flex做词法分析Bison做语法分析 第一个Flex程序, wc.fl, 单词计数程序 ...

  5. 【Storm】storm安装、配置、使用以及Storm单词计数程序的实例分析

    前言:阅读笔记 storm和hadoop集群非常像.hadoop执行mr.storm执行topologies. mr和topologies最关键的不同点是:mr执行终于会结束,而topologies永 ...

  6. 微信小程序期末复习

    过什么六一,复习不完了... 第1章作业 一.单选题(共10题,100.0分) 1以下哪个不是主流的手机操作系统? A.Android B.iOS C.Windows Phone D.Blackber ...

  7. 运行在YARN上的MapReduce应用程序(以MapReduce为例)

    client作用:提交一个应用程序查看一个应用程序的运行状态(通过application master) 第一步:提交MR程序到ResourceManager,ResourceManager为这个应用 ...

  8. 《Hadoop权威》学习笔记五:MapReduce应用程序

    一.API的配置---Configuration类 API的配置:Hadoop提供了专门的API对资源进行配置,Configuration类的实例(在org.apache.hadoop.conf包)包 ...

  9. 一脸懵逼学习Hadoop中的序列化机制——流量求和统计MapReduce的程序开发案例——流量求和统计排序

    一:序列化概念 序列化(Serialization)是指把结构化对象转化为字节流.反序列化(Deserialization)是序列化的逆过程.即把字节流转回结构化对象.Java序列化(java.io. ...

随机推荐

  1. leetcode-easy-math-326. Power of Three

    mycode class Solution(object): def isPowerOfThree(self, n): """ :type n: int :rtype: ...

  2. spring cloud microservice provider and consumer

    MicroService Provider:https://files.cnblogs.com/files/xiandedanteng/empCloud190824.rarMicroService C ...

  3. 再谈 Devstack(Rocky)

    目录 文章目录 目录 前言 网络拓扑 运行环境 要点 步骤 前言 之前写过一篇<Openstack 实现技术分解 (1) 开发环境 - Devstack 部署案例详解>,随着 Devsta ...

  4. 网易云课堂_C++程序设计入门(下)_期末考试_期末考试在线编程题目

    期末考试在线编程题目 返回考试   本次考试题目一共两个,在考试期间可以不限制次数地提交 温馨提示: 1.本次考试属于Online Judge题目,提交后由系统即时判分. 2.学生可以在考试截止时间 ...

  5. zabbix日志报错解决

    [root@bogon ldap]# cat /tmp/zabbix_server.log 9135:20181204:085433.351 using configuration file: /us ...

  6. 自定义Spring-Boot @Enable注解

    Spring-Boot中有很多Enable开头的注解,通过添加注解来开启一项功能,如 其原理是什么?如何开发自己的Enable注解? 1.原理 以@EnableScheduling为例,查看其源码,发 ...

  7. SpringMVC以POST提交表单中文乱码解决方案。

    在web.xml中添加字符集过滤器: <filter> <filter-name>characterEncodingFilter</filter-name> < ...

  8. epoll 性能分析(解决占用CPU 过高问题)2

    针对服务器框架Engine,在工作线程中发现该线程占用CPU过高,分析之后发现问题出在死循环那里 void cServerBase::OnProcess() { printf("cServe ...

  9. 【VS开发】设置文档标题

    [注意]我们注意到我们的文档的创建的时候我们会发现系统会去调用Doc类中的OnNewDocument函数,这里我们知道他是一个虚函数,我们可以在这里设置我们的文档的标题. 代码如下: BOOL CGr ...

  10. lua基础学习(四)

    一,lua字符串   单引号间的一串字符. 双引号间的一串字符. [[和]]间的一串字符.   1.几个常用的转义字符 \b 退格 \f 换页 \n 换行 \r 回车 \t 跳到下一个tab位置 \0 ...