题目

分析

一步步删掉循环,

首先,原式是$$\sum_{i=1}n\sum_{j=1}m\sum_{k=i}n\sum_{l=j}m\sum_{p=i}k\sum_{q=j}l1$$

删掉最后两个循环

\[\sum_{i=1}^n\sum_{j=1}^m\sum_{k=i}^n\sum_{l=j}^m(k-i+1)(l-j+1)
\]

发现,当\(i,j\)固定,随着\(k,l\)的变化,\((k-i+1),(l-j+1)\)都是每次减少1

SO,

\[\sum_{i=1}^n\sum_{j=1}^m[1+2+···+(n-i+1)][1+2+···+(m-j+1)]
\]

再根据等差数列求和公式,

\[\sum_{i=1}^n\sum_{j=1}^m\dfrac{(n-i+1)(n-i+2)(m-j+1)(m-j+2)}{4}
\]

又发现\(\sum_{i=1}^n(n-i+1)(n-i+2),\)其实就是\(1*2+2*3+3*4+···+n*(n+1)\)

设其为\(g(n)\),\(m\)类似

答案就是\(\dfrac{g(n)*g(m)}{4}\)

接着考虑求\(g(n)\)

\[=1^2+1+2^2+2+3^2+3+···+n^2+n
\]

\[=1^2+2^2+3^2+···+n^2+1+2+3+···+n
\]

根据自然数幂和得

\[=\dfrac{n(n+1)(2n+1)}{6}+\dfrac{n(n+1)}{2}
\]

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const long long mo=1000000007;
const int N=10000005;
using namespace std;
long long ans,n,m,ny4,ans1,ans2,ny6;
long long mi(long long x,long long y)
{
long long sum=1;
while(y)
{
if(y&1) sum=sum*x%mo;
x=x*x%mo;
y/=2;
}
return sum;
}
int main()
{
scanf("%lld%lld",&n,&m);
n%=mo;
m%=mo;
ny4=mi(4,mo-2);
ny6=mi(6,mo-2);
ans1=((n*(n+1)%mo*(2*n+1)%mo*ny6%mo)+(n+1)*n/2%mo)%mo;
ans2=((m*(m+1)%mo*(2*m+1)%mo*ny6%mo)+(m+1)*m/2%mo)%mo;
printf("%lld",ans1*ans2%mo*ny4%mo);
}

【NOIP2016提高A组模拟10.15】算循环的更多相关文章

  1. 【JZOJ4819】【NOIP2016提高A组模拟10.15】算循环

    题目描述 输入 输出 样例输入 167 198 样例输出 906462341 数据范围 解法 令f(n)=∑ni=1i,g(n)=∑ni=1i2 易得ans=∑ni=1∑mj=1f(n−i+1)∗f( ...

  2. 【NOIP2016提高A组模拟10.15】最大化

    题目 分析 枚举两个纵坐标i.j,接着表示枚举区域的上下边界, 设对于每个横坐标区域的前缀和和为\(s_l\),枚举k, 显然当\(s_k>s_l\)时,以(i,k)为左上角,(j,k)为右下角 ...

  3. 【JZOJ4820】【NOIP2016提高A组模拟10.15】最大化

    题目描述 输入 输出 样例输入 3 2 4 0 -10 8 -2 -2 样例输出 4 数据范围 解法 枚举两条扫描线,在这两条扫描线之间的矩阵,可以将之转化为一个序列b[i]=a[i][1..m]. ...

  4. NOIP2016提高A组模拟10.15总结

    第一题,就是将原有的式子一步步简化,不过有点麻烦,搞了很久. 第二题,枚举上下边界,维护一个单调队列,二分. 比赛上没有想到,只打了个暴力,坑了80分. 第三题,贪心,最后的十多分钟才想到,没有打出来 ...

  5. 【NOIP2016提高A组模拟10.15】打膈膜

    题目 分析 贪心, 先将怪物按生命值从小到大排序(显然按这个顺序打是最优的) 枚举可以发对少次群体攻击, 首先将所有的群体攻击发出去, 然后一个一个怪物打,当当前怪物生命值大于2,如果还有魔法值就放重 ...

  6. 【NOIP2016提高A组模拟9.15】Osu

    题目 分析 考虑二分答案, 二分小数显然是不可取的,那么我们将所有可能的答案求出来,记录在一个数组上,排个序(C++调用函数很容易超时,手打快排,时间复杂度约为\(O(>8*10^7)\),但相 ...

  7. 【NOIP2016提高A组模拟9.15】Math

    题目 分析 因为\((-1)^2=1\), 所以我们只用看\(\sum_{j=1}^md(i·j)\)的值模2的值就可以了. 易证,一个数x,只有当x是完全平方数时,d(x)才为奇数,否则为偶数. 那 ...

  8. 【NOIP2016提高A组模拟8.15】Garden

    题目 分析 其实原题就是[cqoi2012][bzoj2669]局部极小值. 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点) ...

  9. 【JZOJ4784】【NOIP2016提高A组模拟9.15】Map

    题目描述 输入 输出 样例输入 4 4 2 1 2 2 3 3 2 3 4 1 2 1 4 样例输出 14 数据范围 样例解释 upd:保证原图连通. "不相交路径"的定义为不存在 ...

随机推荐

  1. 《Google工作法》读书笔记

    最近一段时间,拜读了<Google工作法>,工作效率提升10倍的57个技巧. 作者是彼得·费利克斯·格日瓦奇,波兰人. 其中印象最深刻的部分如下: (1)不要被邮件夺走时间 不用邮件,所有 ...

  2. 剑指Offer总结——重建二叉树

    /** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; ...

  3. 【神经网络与深度学习】Caffe训练执行时爆出的Check failed: registry.count(t ype) == 1 (0 vs. 1) Unknown layer type

    自己建立一个工程,希望调用libcaffe.lib ,各种配置好,也能成功编译,但是运行就会遇到报错 F0519 14:54:12.494139 14504 layer_factory.hpp:77] ...

  4. 简述Object(ActiveX)控件遮挡Dialog、select下拉框的解决办法

    1.背景 最近在做项目的过程中,我们使用了Object控件,但是同时在上面写了一个select下拉框,因此每次点击下拉框的时候我们会发现,下拉框的部分内容被Object控件给遮挡了,调查研究后发现,我 ...

  5. 原生js实现选中所有的checkbox

    <div class="con"> <input name='多选项名称' type='checkbox' value='' id="all" ...

  6. javaScript中==和===对数组、对象的判断是它们是否同一个实例对象

      问题描述 在实现业务时,大量用到了 if(a === b)这样的判断,但有一个类似判断一直进不去这个if条件, a === b 返回的一直是false,但是其他几个类似判断,都正常触发条件. 原因 ...

  7. 【转帖】国产x86处理器KX-6000发布

    国产最先进x86处理器KX-6000发布:8核3.0GHz 力压酷睿i5处理器 https://www.cnbeta.com/articles/tech/858981.htm 全网所有的网页都写错了 ...

  8. [转帖] 国产x86-海光禅定 2018年营收过亿?

    中科曙光:全年业绩稳健,海光芯片营收过亿 X86服务器市场Intel占据绝对优势:X86处理器已经成为全球最广泛使用的处理器架构之一,尤其是在PC和服务器领域,其中在处理器市场的份额高达90%以上.中 ...

  9. CF 1140B Good String

    Description You have a string ss of length nn consisting of only characters > and <. You may d ...

  10. 如何用item pipeline(管道)清洗数据

    版权声明:本文为博主原创文章,转载请注明出处:如果博客中有错误之处抑或有可以改进的地方,欢迎在评论区留言. https://blog.csdn.net/f156207495/article/detai ...