题目描述

​ 给你一棵 n 个点的树,对于树上的每个节点 i,求 \(\sum_{j=1}^ndis(i,j)^k\)。其中 \(dis(i,j)\) 为两点在树上的距离。

输入格式

​ 第一行两个整数 n,k。

​ 接下来 n-1 行,每行两个整数 (x,y),表示一条树边。

输出格式

​ 一行一个整数,表示答案对 10007 取模的值。

样例输入

5 2
1 2
1 3
2 4
2 5

样例输出

10
7
23
18
18

数据范围

​ 对于 \(30\%\) 的数据,\(n\le5000,k\le50\)

​ 对于另 \(20\%\) 的数据,保证树是一条链

​ 对于所有数据,\(n\le50000,k\le150\)

解析

题目要求的值即为\(\sum_{i=1}^{n}dis(x,i)^k\)。形式上可以用第二类斯特林数的性质进行化简。

\[\begin{align}
Ans &= \sum_{i=1}^{n}dis(x,i)^k \\
&= \sum_{i=1}^{n} \sum_{j=0}^{k} S(k,j)*j!*C_{dis(x,i)}^{j}\\
&= \sum_{j=0}^{k}S(k,j)*j!*\sum_{i=1}^{n}(C_{dis(x,i)-1}^{j}+C_{dis(x,i)-1}^{j-1})\\
\end{align}
\]

其中斯特林数和阶乘都是可以预处理的。接下来的问题是如何求\(\sum_{i=1}^{n}C_{dis(x,i)}^{j}\)。

设\(f[i][j]\)表示对于第i个点的子树中上式的值,则\(C_{dis(x,i)-1}^{j}\)的值可以看做是在i点儿子的f中并由儿子推出\(f[i][j]\)的值。那么我们可以先假设1号点为根节点,用一遍dfs求出f的值,状态转移方程为

\[f[i][j]=\sum_{son}f[son][j]+f[son][j-1]
\]

然后用换根DP求出以任意i点作为根节点时的\(f[i][j]\)即可。最后的答案为

\[\sum_{j=0}^{k}S(k,j)*j!*f[i][j]
\]

动态规划时注意边界条件。

代码

#include <iostream>
#include <cstdio>
#define N 50002
#define K 201
#define int long long
using namespace std;
const int mod=10007;
int head[N],ver[N*2],nxt[N*2],l;
int n,k,i,j,f1[N][K],f2[N][K],g[K],f[K],s[K][K];
void insert(int x,int y)
{
l++;
ver[l]=y;
nxt[l]=head[x];
head[x]=l;
}
void dfs1(int x,int pre)
{
f1[x][0]=1;
for(int i=head[x];i;i=nxt[i]){
int y=ver[i];
if(y!=pre){
dfs1(y,x);
for(int j=1;j<=k;j++) f1[x][j]=(f1[x][j]+f1[y][j]+f1[y][j-1])%mod;
f1[x][0]=(f1[x][0]+f1[y][0])%mod;
}
}
}
void dfs2(int x,int pre)
{
for(int i=0;i<=k;i++) f2[x][i]=f1[x][i];
if(pre){
for(int i=1;i<=k;i++) g[i]=(f2[pre][i]-f1[x][i]+mod-f1[x][i-1]+mod)%mod;
g[0]=(f2[pre][0]-f1[x][0]+mod)%mod;
for(int i=1;i<=k;i++) f2[x][i]=(f2[x][i]+g[i]+g[i-1])%mod;
f2[x][0]=(f2[x][0]+g[0])%mod;
}
for(int i=head[x];i;i=nxt[i]){
int y=ver[i];
if(y!=pre) dfs2(y,x);
}
}
signed main()
{
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
cin>>n>>k;
for(i=1;i<n;i++){
int u,v;
cin>>u>>v;
insert(u,v);
insert(v,u);
}
s[0][0]=s[1][1]=1;
f[0]=1;
for(i=1;i<=k;i++){
for(j=1;j<=k;j++) s[i][j]=(s[i-1][j-1]+j*s[i-1][j])%mod;
}
for(i=1;i<=k;i++) f[i]=f[i-1]*i%mod;
dfs1(1,0);
dfs2(1,0);
for(i=1;i<=n;i++){
int ans=0;
for(j=0;j<=k;j++) ans=(ans+(s[k][j]*f[j]%mod*f2[i][j])%mod)%mod;
cout<<ans<<endl;
}
fclose(stdin);
fclose(stdout);
return 0;
}

洛谷 P4827 [国家集训队] Crash 的文明世界的更多相关文章

  1. 洛谷P4827 [国家集训队] Crash 的文明世界 [斯特林数,组合数,DP]

    传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前 ...

  2. P4827 [国家集训队] Crash 的文明世界

    传送门:洛谷 题目大意:设$$S(i)=\sum_{j=1}^ndis(i,j)^k$$,求$S(1),S(2),\ldots,S(n)$. 数据范围:$n\leq 50000,k\leq 150$ ...

  3. P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)

    传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...

  4. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

  5. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  6. 洛谷P1829 [国家集训队]Crash的数字表格

    题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...

  7. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  8. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

  9. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题意:求$\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$. 开始开心(自闭)化简: $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)$ =$\su ...

随机推荐

  1. p2p传输协议

    老司机是如何飙车的——P2P传输协议 转载来自2017-03-27 15:23 点波蓝字关注变智者 秋明山上人行稀,常有车手较高低,如今车道依旧在,不见当年老司机.其实老司机们从未离去,只不过好的车手 ...

  2. ORACLE 根据sql_id查询绑定变量的传入值

    当前查询: select b.NAME, b.POSITION, b.DATATYPE_STRING, b.VALUE_STRING, b.LAST_CAPTURED from v$sql_bind_ ...

  3. ORACLE Physical Standby DG 之switch over

    DG架构图如下: 计划,切换之后的架构图: DG切换: 主备切换:这里所有的数据库数据文件.日志文件的路径是一致的 [旧主库]主库primarydb切换为备库standby3主库检查switchove ...

  4. 邻近双线性插值图像缩放的Python实现

    最近在查找有关图像缩放之类的算法,因工作中需要用到诸如此类的图像处理算法就在网上了解了一下相关算法,以及其原理,并用Python实现,且亲自验证过,在次与大家分享. 声明:本文代码示例针对的是plan ...

  5. 【SVN】 一次SVN 修复笔记

    同事乱提交了一个版本之后,SVN上最新版本出现了问题. 原本按照网上其他人的说法,可以手动到服务器端干掉最新版的存档,并修改版本记录到前一个版本号即可,但是这应该是个坑. 掉进这个坑后,需要解决,又不 ...

  6. unittest自动化测试举例:自动读取ymal用例&调用接口并生成报告

    用unittest框架写的接口自动化实现过程: 1.编写ymal格式用例: 2.导入ddt模块,该模块的主要功能是帮你读取ymal用例文件,自动获取内容并循环调用函数,具体见代码. 3.导入Beaut ...

  7. Python笔记(二十八)_魔法方法_迭代器

    迭代器用于遍历容器中的数据,但它不是容器,它是一个实现了__next__方法的对象 与迭代器相关的内置函数: iter(): 将一个对象转换成一个迭代器 next(): 访问迭代器中的下一个变量,直到 ...

  8. 【SD系列】SAP SD模块-公司间销售简介

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[SD系列]SAP SD模块-公司间销售简介   ...

  9. unity全屏截图

    using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI; ...

  10. 【报错】springboot thymeleaf超链接跳转 404

    Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing this as ...