京东科技隐私计算产品部 曹雨晨

为什么从源代码构建

通常情况下,直接安装构建好的.whl即可。不过,当需要一些特殊配置(或者闲来无事想体会 TensorFlow 构建过程到底有多麻烦)的时候,则需要选择从源代码构建TensorFlow。万幸文档混乱的 TensorFlow 还是好心地为我们提供了一整页的文档供参考 https://www.tensorflow.org/install/source?hl=zh-cn ,个人认为其中最需要关注的部分莫过于经过测试供参考的源配置(列于文末)。TF使用 Google 的开源构建工具 bazel 构建,并且源码的版本与 bazel 的版本高度相关,所以尽量匹配版本进行构建。

流程记录 TF v1.14.0 CPU on Ubuntu 18.04

安装对应版本的 bazel

根据计划构建的版本,查阅文末的对应配置,参考官方文档: https://bazel.build/install/ubuntu 安装相应版本的 bazel,如本次计划构建的版本是 v1.14.0,对应的 bazel 版本是 0.24.1(此次使用0.26.1也是可以的)。

为方便,这里直接贴出对应 0.26.1 release 的页面: https://github.com/bazelbuild/bazel/releases?expanded=true&page=2&q=0.26.1 ,点击assets找到对应的文件下载即可。

wget https://github.com/bazelbuild/bazel/releases/download/0.26.1/bazel-0.26.1-installer-linux-x86_64.sh
chmod +x bazel-version-installer-linux-x86_64.sh
./bazel-version-installer-linux-x86_64.sh --user

克隆 TensorFlow 仓库

从 Github 上 clone 源码仓库

git clone https://github.com/tensorflow/tensorflow

cd 到仓库目录并 git checkout到相应 tag,比如这次是构建 v1.14.0 版本:

git checkout v1.14.0

* 一些小调整,通常可以略过

Build with C++17

因为之后需要写的 Custom OP 依赖的另一个库是 C++17,而除了刚刚才发布的 v2.10 版,以前的 TF默认是使用 C++11,实际构建的时候,代码有一些 minor fix。此处参考 https://github.com/tensorflow/tensorflow/pull/30836/files 修改 .bazelrc build:c++17 的配置,在 tensorflow/core/lib/gif/gif_io.cc 中添加 #include<cstring>, 并在 tensorflow/stream_executor/stream_executor_pimpl.h 中添加 #include "absl/memory/memory.h"(否则 compile 时会报错找不到 absl::make_unique)(这里 make_unique 是 C++17 标准库里的用法,Google的abseil的make_unique方法则方便C++11的代码也可以使用它;最新的v2.10版由于默认使用C++17,已经改为std::make_unique)

.bazelrc 文件里记录了构建时各种配置选项 ([--config=option])的映射规则,如有需要可以进行修改。由于 GCC 不支持--stdlib命令,此次修改如下:

  # Build TF with C++ 17 features.
- build:c++17 --cxxopt=-std=c++1z
- build:c++17 --cxxopt=-stdlib=libc++
+ build:c++17 --cxxopt=-std=c++17

网络不通

Bazel 在构建过程中,需要现拉取远程仓库的许多依赖。由于 TF 的构建过程消耗内存很严重,选择在服务器上进行构建,而服务器远程拉取 github 上仓库经常失败。所以需要手动在网络良好的机器上下载相应的库的 release (对应的版本在 WORKSPACE 文件中可以找到一行注释),存放在服务器本地,并在 WORKSPACE 文件中对应的 http_archive 部分添加一行本地地址。若需要换版本,也可以在相应github库的releases下面找到对应的 URL 及 sha256(实在是找不到对应的也可以手动下载压缩包后通过 shasum256 命令获取)

例如:

http_archive(
name = "build_bazel_rules_apple",
sha256 = "a045a436b642c70fb0c10ca84ff0fd2dcbd59cc89100d597a61e8374afafb366",
urls = ["https://github.com/bazelbuild/rules_apple/releases/download/0.18.0/rules_apple.0.18.0.tar.gz",
"file:///opt/tensorflow_build_deps/rules_apple.0.18.0.tar.gz"],
) # https://github.com/bazelbuild/rules_apple/releases

配置 build

运行源码根目录下的 ./configure 进行配置。

./configure

此次编译一个尽量简略的 CPU 版本,会话如下:

WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown".
You have bazel 0.26.1 installed.
Please specify the location of python. [Default is /usr/local/bin/python]: Found possible Python library paths:
/usr/local/lib/python3.6/dist-packages
/usr/lib/python3/dist-packages
Please input the desired Python library path to use. Default is [/usr/local/lib/python3.6/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: n
No XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: n
No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: n
No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: n
No CUDA support will be enabled for TensorFlow. Do you wish to download a fresh release of clang? (Experimental) [y/N]: n
Clang will not be downloaded. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: n
Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
--config=mkl # Build with MKL support.
--config=monolithic # Config for mostly static monolithic build.
--config=ngraph # Build with Intel nGraph support.
--config=numa # Build with NUMA support.
--config=dynamic_kernels # (Experimental) Build kernels into separate shared objects.
--config=v2 # Build TensorFlow 2.x instead of 1.x.
Preconfigured Bazel build configs to DISABLE default on features:
--config=noaws # Disable AWS S3 filesystem support.
--config=nogcp # Disable GCP support.
--config=nohdfs # Disable HDFS support.
--config=nonccl # Disable NVIDIA NCCL support.
Configuration finished

构建 pip 软件包并安装

官方提供的命令:

bazel build [--config=option] //tensorflow/tools/pip_package:build_pip_package

本次使用:

bazel build --config=c++17 --config=c++1z --jobs=6 //tensorflow/tools/pip_package:build_pip_package

其中使用的 --config=c++17 --config=c++1z 对应刚刚修改的 .bazelrc 文件中相应的部分

注意:bazel build 的过程时间会比较长,对内存的消耗较大,jobs 数谨慎开大。

bazel build 结束后,一个名为 build_pip_package 的可执行文件就创建好了,接下来可以执行:

./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

如果希望构建的whl名为 tf-nightly 版本,则可以加上 --nightly_flag 的选项。

./bazel-bin/tensorflow/tools/pip_package/build_pip_package --nightly_flag /tmp/tensorflow_pkg

此后便获得了 .whl 文件,通过 pip 安装即可:

pip install /tmp/tensorflow_pkg/tensorflow-[version]-[tags].whl

其中,version是对应的版本,tags与系统有关。

经过测试的源配置

Linux

CPU

版本 Python 版本 编译器 构建工具
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0
tensorflow-2.1.0 2.7、3.5-3.7 GCC 7.3.1 Bazel 0.27.1
tensorflow-2.0.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1
tensorflow-1.15.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1
tensorflow-1.14.0 2.7、3.3-3.7 GCC 4.8 Bazel 0.24.1
tensorflow-1.13.1 2.7、3.3-3.7 GCC 4.8 Bazel 0.19.2
tensorflow-1.12.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.11.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.10.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0
tensorflow-1.9.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.11.0
tensorflow-1.8.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.7.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.10.0
tensorflow-1.6.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.9.0
tensorflow-1.5.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.8.0
tensorflow-1.4.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.5.4
tensorflow-1.3.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.2.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5
tensorflow-1.1.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2
tensorflow-1.0.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2

GPU

版本 Python 版本 编译器 构建工具 cuDNN CUDA
tensorflow-2.6.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.5.0 3.6-3.9 GCC 7.3.1 Bazel 3.7.2 8.1 11.2
tensorflow-2.4.0 3.6-3.8 GCC 7.3.1 Bazel 3.1.0 8.0 11.0
tensorflow-2.3.0 3.5-3.8 GCC 7.3.1 Bazel 3.1.0 7.6 10.1
tensorflow-2.2.0 3.5-3.8 GCC 7.3.1 Bazel 2.0.0 7.6 10.1
tensorflow-2.1.0 2.7、3.5-3.7 GCC 7.3.1 Bazel 0.27.1 7.6 10.1
tensorflow-2.0.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.15.0 2.7、3.3-3.7 GCC 7.3.1 Bazel 0.26.1 7.4 10.0
tensorflow_gpu-1.14.0 2.7、3.3-3.7 GCC 4.8 Bazel 0.24.1 7.4 10.0
tensorflow_gpu-1.13.1 2.7、3.3-3.7 GCC 4.8 Bazel 0.19.2 7.4 10.0
tensorflow_gpu-1.12.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.11.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.10.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.15.0 7 9
tensorflow_gpu-1.9.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.11.0 7 9
tensorflow_gpu-1.8.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.10.0 7 9
tensorflow_gpu-1.7.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.6.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.9.0 7 9
tensorflow_gpu-1.5.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.8.0 7 9
tensorflow_gpu-1.4.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.5.4 6 8
tensorflow_gpu-1.3.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5 6 8
tensorflow_gpu-1.2.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.5 5.1 8
tensorflow_gpu-1.1.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7、3.3-3.6 GCC 4.8 Bazel 0.4.2 5.1 8

macOS

CPU

版本 Python 版本 编译器 构建工具
tensorflow-2.6.0 3.6-3.9 Xcode 10.11 中的 Clang Bazel 3.7.2
tensorflow-2.5.0 3.6-3.9 Xcode 10.11 中的 Clang Bazel 3.7.2
tensorflow-2.4.0 3.6-3.8 Xcode 10.3 中的 Clang Bazel 3.1.0
tensorflow-2.3.0 3.5-3.8 Xcode 10.1 中的 Clang Bazel 3.1.0
tensorflow-2.2.0 3.5-3.8 Xcode 10.1 中的 Clang Bazel 2.0.0
tensorflow-2.1.0 2.7、3.5-3.7 Xcode 10.1 中的 Clang Bazel 0.27.1
tensorflow-2.0.0 2.7、3.5-3.7 Xcode 10.1 中的 Clang Bazel 0.27.1
tensorflow-2.0.0 2.7、3.3-3.7 Xcode 10.1 中的 Clang Bazel 0.26.1
tensorflow-1.15.0 2.7、3.3-3.7 Xcode 10.1 中的 Clang Bazel 0.26.1
tensorflow-1.14.0 2.7、3.3-3.7 Xcode 中的 Clang Bazel 0.24.1
tensorflow-1.13.1 2.7、3.3-3.7 Xcode 中的 Clang Bazel 0.19.2
tensorflow-1.12.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.15.0
tensorflow-1.11.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.15.0
tensorflow-1.10.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.15.0
tensorflow-1.9.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.11.0
tensorflow-1.8.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.10.1
tensorflow-1.7.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.10.1
tensorflow-1.6.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.8.1
tensorflow-1.5.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.8.1
tensorflow-1.4.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.5.4
tensorflow-1.3.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.5
tensorflow-1.2.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.5
tensorflow-1.1.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2
tensorflow-1.0.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2

GPU

版本 Python 版本 编译器 构建工具 cuDNN CUDA
tensorflow_gpu-1.1.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2 5.1 8
tensorflow_gpu-1.0.0 2.7、3.3-3.6 Xcode 中的 Clang Bazel 0.4.2 5.1 8

从源代码构建TensorFlow流程记录的更多相关文章

  1. 基于源代码为树莓派设备构建 TensorFlow

    本指南为运行 Raspbian 9.0 操作系统的 Raspberry Pi 嵌入式设备构建 TensorFlow.虽然这些说明可能也适用于其他系列的 Raspberry Pi 设备,但它仅针对此文中 ...

  2. 3天时间从零到上架AppStore流程记录

    3天时间从零到上架AppStore流程记录 清明假期刚过去一周,我如愿以偿把自己想要的一个App上架了AppStore 从有idea到技术选型,从设计稿到框架开发,从提审AppStore到上架一共经历 ...

  3. 从源代码构建 Go 开发环境

    从源代码构建 Go 开发环境 Go 1.5 之前的版本 安装C 语言开发环境 在Go 1.5 之前的版本(比如 1.3.1.4),都会部分的依赖 C 语言的工具链,所以如果你有C 语言的开发环境,就可 ...

  4. vue框架构建项目流程

    构建项目流程: 1.全局查询:node -v 2.全局初始化:npm install --global vue-cli 3.模块化工程:vue init webpack myapp--->y,n ...

  5. 利用cocoapods管理开源项目,支持 pod install安装整个流程记录(github公有库)

    利用cocoapods管理开源项目,支持 pod install安装整个流程记录(github公有库),完成预期的任务,大致有下面几步: 1.代码提交到github平台 2.创建.podspec 3. ...

  6. CentOS7+CDH5.14.0安装全流程记录,图文详解全程实测-总目录

    CentOS7+CDH5.14.0安装全流程记录,图文详解全程实测-总目录: 0.Windows 10本机下载Xshell,以方便往Linux主机上上传大文件 1.CentOS7+CDH5.14.0安 ...

  7. ActiveMQ从源代码构建

    众多开源项目.我们一般都是直接拿过来用之而后快. 只是我们也应该知道这些项目是怎样从源代码构建而来的. 既然代码是写出来的,就不能避免有BUG存在,话说没有完美的软件,也没有无漏洞的程序. 事实上从源 ...

  8. SSL免费证书申请以及nginx配置https流程记录

    设置https需要ssl 证书,可以通过FreeSSL[https://freessl.org/]申请. 流程记录: 输入域名,如 http://www.youdias.xin 选择品牌,如Let's ...

  9. webpack4.0构建项目流程

    webpack4.0构建项目流程,具体的就不一一唠叨了,这里给出构建流程步骤: 流程大图: 下载高清大图

  10. TensorFlow使用记录 (六): 优化器

    0. tf.train.Optimizer tensorflow 里提供了丰富的优化器,这些优化器都继承与 Optimizer 这个类.class Optimizer 有一些方法,这里简单介绍下: 0 ...

随机推荐

  1. 面试官:说一下Jena推理

    摘要:本文介绍了Jena的推理子系统,并构建了一个简单的RDF图.基于该RDF图,我们搭建了一个Jena推理引擎,并进行自动化推理. 本文分享自华为云社区<知识推理之基于jena的知识推理(三) ...

  2. 什么?语音合成开源代码不会跑,follow me!

    摘要:本文描述的深度神经网络模型结构:: Natural TTS synthesis by conditioning Wavenet on MEL spectogram predictions. 本文 ...

  3. Solon Aop 特色开发(3)构建一个Bean的三种方式

    Solon,更小.更快.更自由!本系列专门介绍Solon Aop方面的特色: <Solon Aop 特色开发(1)注入或手动获取配置> <Solon Aop 特色开发(2)注入或手动 ...

  4. Linux day3:⽹络不通排查流程 linux重要数据文件 系统优化相关 上传下载 文件权限 所属用户及用户组

    目录 ⽹络不通排查流程 linux重要数据文件 etc⽬录下重要的数据⽂件 usr⽬录下重要的数据⽂件 var⽬录下重要的数据⽂件 proc⽬录重要的数据⽂件 系统优化相关 环境变量 下载软件优化操作 ...

  5. MB51增强

    一.在MB51报表中新增列 包含文件RM07DOCS_GENERATED的itab结构中,新增字段 在RM07DOCS中的detail_list子例程中添加查询逻辑 在子例程build_fieldca ...

  6. 【C++第三方库】Windows下编译和使用 WebSocket++/WebSocketpp

    应用场景: 使用C++开发一个支持websocket协议的服务进程,可与HTML5(浏览器js文件)通信.来实现替换基于firebreath框架的跨浏览器插件开发. 当前,讲述websocketpp开 ...

  7. ACM | 动态规划-数塔问题变种题型

    前言 数塔问题,又称数字三角形.数字金字塔问题.数塔问题是多维动态规划问题中一类常见且重要的题型,其变种众多,难度遍布从低到高,掌握该类型题目的算法思维,对于攻克许多多维动态规划的问题有很大帮助. 当 ...

  8. echarts网络拓扑图动态流程图

    https://aixiaodou.blog.csdn.net/article/details/93712083?utm_medium=distribute.pc_relevant.none-task ...

  9. freeswitch-1.10.7性能测试

    概述 freeswitch 是一款简单好用的开源软交换平台. freeswitch-1.10.7是比较新的版本,使用时间比较短,需要一个可参考的性能指标,作为实际使用过程中的配置指导. 环境 cent ...

  10. python常见面试题讲解(九)字符个数统计

    题目描述 编写一个函数,计算字符串中含有的不同字符的个数.字符在ACSII码范围内(0~127),换行表示结束符,不算在字符里.不在范围内的不作统计.注意是不同的字符 输入描述: 输入N个字符,字符在 ...