Spark任务OOM问题如何解决?
大家好,我是 V 哥。在实际的业务场景中,Spark任务出现OOM(Out of Memory) 问题通常是由于任务处理的数据量过大、资源分配不合理或者代码存在性能瓶颈等原因造成的。针对不同的业务场景和原因,可以从以下几个方面进行优化和解决。
一、业务场景及可能的OOM原因分析
数据量过大:
- 业务场景:处理海量数据集(例如,数亿行日志数据或数十TB的数据集),任务执行过程中需要对数据进行大规模的聚合、排序、连接等操作。
- OOM 原因:数据无法完全放入内存,导致溢出,尤其是在
shuffle或join操作时,数据量暴增。
数据倾斜:
- 业务场景:处理的数据分布不均匀(如某个用户或产品的数据量过多),导致部分节点上出现计算或内存瓶颈。
- OOM 原因:由于部分节点需要处理大量的数据,某些节点的任务会使用超出可用内存的资源,而其他节点的负载较轻。
不合理的资源分配:
- 业务场景:资源分配过低,导致单个任务分配到的内存、CPU等资源不足。
- OOM 原因:Executor的内存设置太小,或者数据过度缓存,导致内存不足。
代码中存在缓存过多或内存使用不合理:
- 业务场景:频繁使用
cache()、persist(),或对数据结构进行不必要的操作,导致内存过度消耗。 - OOM 原因:数据缓存没有及时释放,导致内存占用过多。
- 业务场景:频繁使用
二、针对OOM问题的解决方案
1. 调整Executor的内存和CPU资源
通过合理的资源分配,确保每个Executor有足够的内存处理数据。
- 增加Executor的内存:
Spark 中的Executor负责在集群节点上执行任务,默认每个Executor的内存可能不足以处理大数据集。可以增加Executor的内存以缓解OOM问题。
--executor-memory 8G
可以通过--executor-memory选项来设置每个Executor的内存。例如,将内存设置为8GB。如果数据量很大,可以根据情况设置更大的内存。
- 调整堆外内存:
Spark还使用了一部分堆外内存(off-heap memory)。如果涉及大量的堆外内存操作,可以通过以下配置增加堆外内存:
--conf spark.memory.offHeap.enabled=true
--conf spark.memory.offHeap.size=4G
- 调整Executor的CPU核心数:
为每个Executor分配更多的CPU核心,以加快任务的处理速度,防止长时间占用内存。
--executor-cores 4
通过--executor-cores设置每个Executor使用的核心数。例如,可以将核心数设置为4,以提升并发计算能力。
2. 调整内存管理策略
Spark的内存管理策略主要涉及以下几个关键参数,它们的优化配置可以帮助减少OOM问题。
- 调整内存管理比例:
Spark 2.x 及以上版本采用统一的内存管理模型,可以通过调节以下参数优化内存使用:
--conf spark.memory.fraction=0.8
--conf spark.memory.storageFraction=0.5
spark.memory.fraction:该参数控制了存储与执行内存的总占比,默认是0.6,可以适当调高。spark.memory.storageFraction:该参数决定了在memory.fraction的基础上,存储内存的占比。如果需要更多执行内存,可以适当减小该值。
- 减少缓存数据的存储占用:
- 及时清理缓存:对于不再需要的数据,及时调用
unpersist()来清理缓存,释放内存。
- 及时清理缓存:对于不再需要的数据,及时调用
rdd.unpersist()
- 调整缓存级别:在缓存时,使用
StorageLevel.DISK_ONLY或StorageLevel.MEMORY_AND_DISK,以减少内存占用。
rdd.persist(StorageLevel.MEMORY_AND_DISK)
3. 数据切分与优化操作
Spark任务中的shuffle、join、groupBy等操作通常会引起大量内存消耗,以下优化可以减轻这些操作带来的OOM风险。
- 调整分区数:
- 对于大规模数据操作如
join、shuffle等,分区数的设置至关重要。如果分区数过少,可能会导致某些分区数据量过大,进而导致内存溢出。
- 对于大规模数据操作如
rdd.repartition(200)
或者在执行某些操作时,显式指定分区数:
rdd.reduceByKey(_ + _, numPartitions = 200)
- 通常的经验是将分区数量设置为比Executor数量高出数倍(例如,每个核心处理2-4个分区)。
- 避免过多的宽依赖:
宽依赖(如groupByKey)会在shuffle时造成内存的压力,特别是数据量较大时,应该尽量避免。可以通过替换为reduceByKey等具有预聚合功能的操作来减少内存消耗:
rdd.reduceByKey(_ + _)
避免数据倾斜:
如果存在数据倾斜,部分节点处理大量数据,容易导致OOM。以下是常见的解决方法:- 随机键拆分:可以为数据加上随机前缀,以打散数据,避免部分节点数据量过大。
rdd.map(x => ((x._1 + new Random().nextInt(10)), x._2))
- 广播小表:在
join操作中,如果一张表很小,可以使用广播变量,将小表广播到每个节点,减少数据传输和内存占用:
val broadcastVar = sc.broadcast(smallTable)
largeTable.mapPartitions { partition =>
val small = broadcastVar.value
partition.map(largeRow => ...)
}
4. 调整Spark的并行度和Shuffle机制
Spark的shuffle操作(如groupByKey、join)会导致大量数据需要在不同的节点之间传输。如果并行度设置过低,容易导致某个节点处理的数据量过大,从而引发OOM。
- 增加并行度:
--conf spark.sql.shuffle.partitions=200
或者在代码中显式设置:
spark.conf.set("spark.sql.shuffle.partitions", "200")
- 默认情况下,
spark.sql.shuffle.partitions的值可能偏小(例如200),根据数据规模适当调整该值可以减轻单个节点的负载。
- 调整Shuffle合并机制:
Spark 3.0引入了 Adaptive Query Execution (AQE),可以在执行时动态调整shuffle的分区数,避免某些分区数据量过大:
--conf spark.sql.adaptive.enabled=true
--conf spark.sql.adaptive.shuffle.targetPostShuffleInputSize=64M
AQE 可以根据任务的执行情况自动调整shuffle的分区数,从而避免OOM。
五、小结一下
Spark任务中的OOM问题常常由于数据量过大、数据倾斜、资源分配不合理等问题引起,针对不同的业务场景,可以采取以下措施进行优化:
- 合理分配内存和CPU:增加Executor的内存和CPU核心数,合理配置内存管理参数。
- 调整分区数和优化操作:通过调整分区数、减少宽依赖等方式减少内存占用。
- 处理数据倾斜:通过随机键拆分、广播小表等方法避免数据倾斜。
- 使用缓存优化内存:减少不必要的
cache()和persist()操作,并及时释放缓存数据。
好了,今天的内容就写到这里,这些优化方法结合使用,可以有效解决Spark任务中的OOM问题。关注威哥爱编程,码码通畅不掉发。
Spark任务OOM问题如何解决?的更多相关文章
- Spark面对OOM问题的解决方法及优化总结 (转载)
转载地址: http://blog.csdn.net/yhb315279058/article/details/51035631 Spark中的OOM问题不外乎以下两种情况 map执行中内存溢 ...
- Spark技术内幕: 如何解决Shuffle Write一定要落盘的问题?
在Spark 0.6和0.7时,Shuffle的结果都需要先存储到内存中(有可能要写入磁盘),因此对于大数据量的情况下,发生GC和OOM的概率非常大.因此在Spark 0.8的时候,Shuffle的每 ...
- Spark程序运行常见错误解决方法以及优化
转载自:http://bigdata.51cto.com/art/201704/536499.htm Spark程序运行常见错误解决方法以及优化 task倾斜原因比较多,网络io,cpu,mem都有可 ...
- Spark性能调优之解决数据倾斜
Spark性能调优之解决数据倾斜 数据倾斜七种解决方案 shuffle的过程最容易引起数据倾斜 1.使用Hive ETL预处理数据 • 方案适用场景:如果导致数据倾斜的是Hive表.如果该Hiv ...
- [Dynamic Language] pyspark Python3.7环境设置 及py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe解决!
pyspark Python3.7环境设置 及py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spa ...
- JVM组成、GC回收机制、算法、JVM常见启动参数、JAVA出现OOM,如何解决、tomcat优化方法
JVM组成.GC回收机制.算法.JVM常见启动参数.JAVA出现OOM,如何解决.tomcat优化方法
- Spark性能优化之道——解决Spark数据倾斜(Data Skew)的N种姿势
原创文章,同步首发自作者个人博客转载请务必在文章开头处注明出处. 摘要 本文结合实例详细阐明了Spark数据倾斜的几种场景以及对应的解决方案,包括避免数据源倾斜,调整并行度,使用自定义Partitio ...
- Spark累加器(Accumulator)陷阱及解决办法
累加器(accumulator)是Spark中提供的一种分布式的变量机制,其原理类似于mapreduce,即分布式的改变,然后聚合这些改变.累加器的一个常见用途是在调试时对作业执行过程中的事件进行计数 ...
- 关于android 使用bitmap的OOM心得和解决方式
android开发,从2010年開始学习到如今的独立完毕一个app,这漫长的四年,已经经历了非常多次bug的折磨.无数次的加班训练.然而,自以为自己已经比較了解android了,却近期在一个项目上.由 ...
- spark遇到的问题及解决方法
1. 表中数据过亿,加载速度过慢,而我只需要加载增量数据 如:加载昨天一整天的数据,添加predicates分区,方法如下: //predicates相当于是把昨天的数据分成一个区,其它的数据不加载 ...
随机推荐
- 【IDEA】转大小写快速操作
需求场景: 快速修改一些字符全部变成大写,或者小写 例如修改SQL语句,部分字段大写,部分字段小写,需要统一 快捷键: [Ctrl + Shift + U] 演示案例: SELECT ( (SELEC ...
- 斯坦福AI团队被质疑抄袭国产大模型
原文地址: https://mbd.baidu.com/newspage/data/landingsuper?context={"nid"%3A"news_8882699 ...
- 全球最大开源模型Grok-1 —— 马斯克的大模型
Grok官网: https://grok.x.ai/
- 根据baselines库修改的运行输入参数的解析代码
如题: def arg_parser(): """ Create an empty argparse.ArgumentParser. """ ...
- python中不同方法的按索引读取数组的性能比较——哪种按索引读取数组的性能更好
写python代码这么多年,从来也没有想过不同方式的读取python数组会有什么太大的性能差距,不过这段时间写代码突然发现这个差别还挺大,于是就多研究了一下. 本文研究的是使用不同方式来对python ...
- git clone 如何通过proxy进行远程代码仓库拷贝下载
git使用proxy的方式和ssh的情况是差不多的,给出借鉴: SSH如何通过proxy进行服务器连接 ------------------------------------------------ ...
- SeaTunnel毕业!首个国人主导的数据集成项目成为Apache顶级项目
采访嘉宾 | 郭炜.高俊 编辑 | Tina 北京时间 2023 年 6 月 1 日,全球最大的开源软件基金会 Apache Software Foundation(以下简称 ASF)正式宣布 Apa ...
- 微信小程序wx.getUserInfo授权获取用户信息(头像、昵称)
这个接口只能获得一些非敏感信息,例如用户昵称,用户头像,经过用户授权允许获取的情况下即可获得用户信息,至于openid这些,需要调取wx.login来获取. index.wxml <!-- 当已 ...
- C语言编程-GCC编译过程
gcc编译 预处理 ->编译->汇编->链接 预处理 gcc -E helloworld.c -o helloworld.i 头文件展开:不检查语法错误,即可以展开任意文件: 宏定义 ...
- 仿MFC的消息印射(全局函数的实现)
//弄了个仿MFC消息映射,这是全局函数都好弄,照着MFC就弄出来了,//在vs2017上可以通过#include <windows.h> #include "resource. ...