[ Wechat:Y466551 | 付费咨询,非诚勿扰 ]

论文信息

论文标题:Dynamic Weighted Learning for Unsupervised Domain Adaptation

论文作者:Jihong Ouyang、Zhengjie Zhang、Qingyi Meng
论文来源:2023 aRxiv
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

   

2 方法

2.1 出发点

  

  反应的问题:随着域对齐的实现,判别性在下降;

2.2 模型框架

  

2.3 Sample Weighting

  为避免由于源域和目标域样本数量差距过大导致模型产生倾向性,本文对每个域的样本进行加权:

    $\begin{array}{l}\hat{x}_{i}^{s}=a\left(1+\frac{n_{t}}{n_{s}}\right) x_{i}^{s} \quad, \quad i=1,2, \ldots, n_{s} \\\hat{x}_{j}^{t}=a\left(1+\frac{n_{s}}{n_{t}}\right) x_{j}^{t} \quad, \quad j=1,2, \ldots, n_{t}\end{array}  $

  其中,$a \in(0,1]$ 是一个控制样本加权程度的超参数。

2.4 Domain Alignment Learning and Class Discrimination Learning

  域对齐(对抗性学习):

    $\begin{array}{r} \underset{\theta_{g}}{\text{min}} \; \underset{\theta_{d}}{\text{max}} \; \mathcal{L}_{d a}\left(\theta_{g}, \theta_{d}\right)=\mathbb{E}_{x_{i}^{s} \sim \mathcal{D}_{s}} \log \left[D\left(G\left(\hat{x}_{i}^{s}\right)\right)\right] +\mathbb{E}_{x_{j}^{t} \sim \mathcal{D}_{t}} \log \left[1-D\left(G\left(\hat{x}_{j}^{t}\right)\right)\right]\end{array}$

  鉴别性特征学习:

    $\begin{aligned}  \underset{\theta_{g}, \theta_{c}}{\text{min}} \;  \underset{\theta_{c_{1}}, \theta_{c_{2}}}{\text{max}}  \; \mathcal{L}_{c d} & \left(\theta_{g}, \theta_{c}, \theta_{c_{1}}, \theta_{c_{1}}\right) \\= & \mathbb{E}_{x_{j}^{t} \sim \mathcal{D}_{t}}\left\|C_{1}\left(G\left(\hat{x}_{j}^{t}\right)\right)-C_{2}\left(G\left(\hat{x}_{j}^{t}\right)\right)\right\|_{1} \\& +\left\|C\left(G\left(\hat{x}_{j}^{t}\right)\right)-C_{1}\left(G\left(\hat{x}_{j}^{t}\right)\right)\right\|_{1} \\& +\left\|C\left(G\left(\hat{x}_{j}^{t}\right)\right)-C_{2}\left(G\left(\hat{x}_{j}^{t}\right)\right)\right\|_{1}\end{aligned}$

  Note:$C$、$C_{1}$、$C_{2}$ 是使用源域数据预训练得到的分类器。首先,固定 $G$ 和 $C$ 最大化 $C_1$ 和 $C_2$ 的差异。然后,固定 $C_{1}$ 和 $C_{2}$ 训练 $G$ 和 $C$。

2.5 Dynamic Weighted Learning

  域对齐度量 [ MMD ]:

    $\operatorname{MMD}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)=\left\|\mathbb{E}_{x_{i}^{s} \sim \mathcal{D}_{s}} G\left(\hat{x}_{i}^{s}\right)-\mathbb{E}_{x_{j}^{t} \sim \mathcal{D}_{t}} G\left(\hat{x}_{j}^{t}\right)\right\|^{2}$

  鉴别性度量  [ LDA ]:

    $\underset{\mathbf{W}}{\text{max}} \;  J(\mathbf{W})=\frac{\operatorname{tr}\left(\mathbf{W}^{\top} \mathbf{S}_{\mathbf{b}} \mathbf{W}\right)}{\operatorname{tr}\left(\mathbf{W}^{\top} \mathbf{S}_{\mathbf{w}} \mathbf{W}\right)}$

  其中,$\mathbf{S}_{\mathrm{b}}$ 为类间散射矩阵,$\mathbf{S}_{\mathbf{w}}$ 为类内散射矩阵。

  注意:$J(\mathbf{W})$ 越大,具有更好的辨别性。

  由于上述两个评价标准不在一个数量级上,本文对其进行了归一化处理:

    $\begin{array}{l}\operatorname{\text{M}} \tilde{\text{M}} \text{D}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)=\frac{\operatorname{MMD}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)-\operatorname{MMD}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)_{\min }}{\operatorname{MMD}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)_{\max }-\operatorname{MMD}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)_{\min }} \end{array}$

    $\tilde{J}(\mathbf{W})=\frac{J(\mathbf{W})-J(\mathbf{W})_{\min }}{J(\mathbf{W})_{\max }-J(\mathbf{W})_{\min }}$

  构造一个动态平衡因子:

    $\tau=\frac{\operatorname{M} \tilde{\mathbf{M}}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)}{\operatorname{M} \tilde{\mathbf{M}}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)+(1-\tilde{J}(\mathbf{W}))}$

  注意:$\text{M} \tilde{\text{M}} \text{D}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ 越小代表这域对齐效果越好,$1-\tilde{J}(\mathbf{W})$ 越小代表这鉴别性特征越好。

  • 当域对齐的程度远优于类的可辨别性时,$\text{M} \tilde{\text{M}} \text{D}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ 接近 $0$,$1-\tilde{J}(\mathbf{W}) $ 接近 $1$ ,$\tau$ 接近 $0$ ;
  • 当域对齐程度远低于类别识别程度时,$\text{M} \tilde{\text{M}} \text{D}\left(\mathcal{D}_{s}, \mathcal{D}_{t}\right)$ 接近 $1$,$1-\tilde{J}(\mathbf{W}) $ 接近 $0$ ,$\tau$ 接近 $1$ ;

  基于 $\tau$ 的良好特性,采用 $\tau$ 作为域对齐损失的权重,$1−\tau $ 作为类鉴别损失的权重。因此,得到的域对齐和类鉴别的动态加权模型如下:

    $\begin{array}{l}  \underset{\theta_{g}, \theta_{c}}{\text{min}}   \;\; \underset{\theta_{\theta_{d}, \theta_{c_{1}}, \theta_{c_{2}}}}{\text{max}}    \tau \cdot \mathcal{L}_{d a}\left(\theta_{g}, \theta_{d}\right)+ (1-\tau) \cdot \mathcal{L}_{c d}\left(\theta_{g}, \theta_{c}, \theta_{c_{1}}, \theta_{c_{2}}\right)\end{array}$

  • 当领域对齐学习的有效性远远低于类辨别学习时,模型增加了域对齐学习的权重;
  • 当鉴别学习的学习效果远低于域对齐学习时,模型增加鉴别学习的权重;

  在这种动态加权学习机制下,可以保持域对齐学习与类辨别学习之间的一致性,从而避免过度的域对齐或类可辨别性。

2.6 Overall Training Objective

  总体训练目标整合了样本加权、领域对齐学习、类判别学习和动态加权学习。此外,还需要最小化标记源样本的期望源误差。最终的极大极小目标:

    $\begin{array}{l}\underset{\theta_{g}, \theta_{c}}{\text{min}} \;\;\underset{\theta_{d}, \theta_{c_{1}}, \theta_{c_{2}}}{\text{max}}\sum_{i=1}^{t_{s}} \mathcal{L}_{c e}\left(C\left(G\left(x_{i}^{s} ; \theta_{g}\right) ; \theta_{c}\right), y_{i}^{s}\right) +\tau \cdot \mathcal{L}_{d a}\left(\theta_{g}, \theta_{d}\right)+(1-\tau) \cdot \mathcal{L}_{c d}\left(\theta_{g}, \theta_{c}, \theta_{c_{1}}, \theta_{c_{2}}\right)\end{array}$

3 实验

分类结果

  

收敛性分析

  

  对于每个子图,红色曲线的左轴表示分类误差,蓝色曲线的右轴表示平衡因子 $\tau$ 的值。可以发现,随着迭代,它们两者都逐渐收敛到一个平坦的值。这意味着随着 $\tau$ 的减少,使得类的可鉴别性被强调,使得分类误差也减小。

  在迭代过程中,当 $\tau$ 的变化相对明显时,识别精度的提高也相对明显。我们将 $\tau$ 的初始值设为 $0.5$,可以发现 $\tau$  在第一个时期急剧下降到 $0.5$ 以下,说明该模型的对齐性相对较好,但可辨别性相对较差。

混淆矩阵可视化

  

对齐度和可鉴别性度的分析

  

消融实验

  

  

论文解读(DWL)《Dynamic Weighted Learning for Unsupervised Domain Adaptation》的更多相关文章

  1. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  2. 迁移学习(DCCL)《Domain Confused Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Domain Confused Contrastive Learning for Unsupervised Domain Adaptation论文作者:Quanyu Long, T ...

  3. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  4. 论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》

    论文信息 论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation论文作者:Guoqiang Wei, Cuil ...

  5. 迁移学习(CLDA)《CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation》

    论文信息 论文标题:CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation论文作者:Ankit Singh论文来源:NeurI ...

  6. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  7. 迁移学习《Asymmetric Tri-training for Unsupervised Domain Adaptation》

    论文信息 论文标题:Asymmetric Tri-training for Unsupervised Domain Adaptation论文作者:Kuniaki Saito, Y. Ushiku, T ...

  8. 虚假新闻检测(CADM)《Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversarial Domain Mixup》

    论文信息 论文标题:Unsupervised Domain Adaptation for COVID-19 Information Service with Contrastive Adversari ...

  9. 迁移学习(IIMT)——《Improve Unsupervised Domain Adaptation with Mixup Training》

    论文信息 论文标题:Improve Unsupervised Domain Adaptation with Mixup Training论文作者:Shen Yan, Huan Song, Nanxia ...

  10. 迁移学习(TSRP)《Improving Pseudo Labels With Intra-Class Similarity for Unsupervised Domain Adaptation》

    论文信息 论文标题:Improving Pseudo Labels With Intra-Class Similarity for Unsupervised Domain Adaptation论文作者 ...

随机推荐

  1. 在Bamboo上怎么使用iOS的单元测试

    作者:京东零售 吴滔 本教程将使用北汽登录模块为例,一步一步和大家一起搭建单元测试用例,并在Bamboo上跑起来,最终测试结果和代码覆盖率会Bamboo上汇总. 模块名称:BQLoginModule, ...

  2. pngquant 在 Windows 上压缩带中文路径的 png 图片

    pngquant 是一个优秀的 png 压缩工具,但是在 Windows 上不支持目录中带有 unicode 字符(例如中文)的文件.所以要用一个折中的办法(即标准输入)让 pngquant 压缩目录 ...

  3. 2021-03-11:go中,协程内部再启用协程,它们是没关系,对吧?外部协程奔溃,内部协程还会执行吗?外部协程执行结束的时候,如何让内部协程也停止运行?golang原生提供的包里,让内部协程停止运行,如何实现?

    2021-03-11:go中,协程内部再启用协程,它们是没关系,对吧?外部协程奔溃,内部协程还会执行吗?外部协程执行结束的时候,如何让内部协程也停止运行?golang原生提供的包里,让内部协程停止运行 ...

  4. 2022-01-01:给定int[][] meetings,比如 { {66, 70} 0号会议截止时间66,获得收益70 {25, 90} 1号会议截止时间25,获得收益90

    2022-01-01:给定int[][] meetings,比如 { {66, 70} 0号会议截止时间66,获得收益70 {25, 90} 1号会议截止时间25,获得收益90 {50, 30} 2号 ...

  5. 2021-10-12:验证回文串。给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写。说明:本题中,我们将空字符串定义为有效的回文串 。输入: “A man, a plan

    2021-10-12:验证回文串.给定一个字符串,验证它是否是回文串,只考虑字母和数字字符,可以忽略字母的大小写.说明:本题中,我们将空字符串定义为有效的回文串 .输入: "A man, a ...

  6. Winform 遮罩懒人处理法

    前言 之前有个项目需要执行一个略微耗时的操作大概五六七八九十秒这样子,这个时候程序不能做其他操作,只能等待操作完成.为了提升一丝使用体验同时让Winform程序看上去高级一点,就想到加一个遮罩层(Ma ...

  7. vue全家桶进阶之路39:Vue3 状态管理

    Vue3 的状态管理主要是通过 Vuex 4 来实现.Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式,它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式 ...

  8. mysql报错Unknown collation: utf8mb4_0900_ai_ci

    mysql报错Unknown collation: utf8mb4_0900_ai_ci 解决方案: 将文件内的所有 utf8mb4_0900_ai_ci 换成 utf8_general_ci utf ...

  9. adb server version (31) doesn't match this client (41); killing...

    使用用 adb devices 提示如下错误 C:\Users\Lenovo>adb devices adb server version (31) doesn't match this cli ...

  10. 时间不等人,但 Moment.js 可以等你解决时间问题!

    前言 一直以来,处理时间和日期的JavaScript库,选用的都是Moment.js.它的API清晰简单,使用方便灵巧,功能还特别齐全. 我是Moment.js的重度使用者.凡是遇到时间和日期的操作, ...