题目链接

题目

题目描述

有一棵点数为 N 的树,以点 1 为根,且树点有边权。

然后有 M 个 操作,分为三种:

操作 1 :把某个节点 x 的点权增加 a 。

操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。

操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

输入描述

第一行包含两个整数N, M。表示点数和操作数。

接下来一行N个整数,表示树中节点的初始权值。

接下来N-1行每行三个正整数 fr, to ,表示该树中存在一条边 (fr, to) 。

再接下来M行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ),之后接这个操作的参数( x 或者 x a ) 。

输出描述

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

示例1

输入

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

输出

6
9
13

备注

对于 100% 的数据, \(N,M\le 100000\) ,且所有输入数据的绝对值都不会超过 10^6 。

题解

知识点:DFS序,线段树。

这题可以用树剖写,是板题。这里用dfs序写一下。

转换为dfs序后,每个子树都有一个开始标志和结束标志。我们查询根节点的开始标志到目标节点开始标志的这一个区间,如果不属于根节点到自己路径上的其他点,会同时遇到开始和结束标志。因此,我们可以给开始和结束标志赋予相同权值,但一正一负,那么区间和时,若同时遇到,则和为 \(0\) ,等价于没有算这个节点的值,而最后结果就只有路径和。

因此,我们使用dfs序,用线段树维护。其中节点属性 \(cnt\) ,表示一个区间的开始标志与结束标志的数量差,用以更新权值时计算。

时间复杂度 \(O((n+m)\log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; struct Graph {
struct edge {
int v, nxt;
};
int idx;
vector<int> h;
vector<edge> e; Graph(int n = 0, int m = 0) { init(n, m); } void init(int n, int m) {
idx = 0;
h.assign(n + 1, 0);
e.assign(m + 1, {});
} void add(int u, int v) {
e[++idx] = { v,h[u] };
h[u] = idx;
}
}; struct T {
int cnt;
ll sum;
static T e() { return { 0,0 }; }
friend T operator+(const T &a, const T &b) { return { a.cnt + b.cnt,a.sum + b.sum }; }
};
struct F {
ll add;
static F e() { return { 0 }; }
T operator()(const T &x) { return { x.cnt,x.sum + add * x.cnt }; }
F operator()(const F &g) { return { g.add + add }; }
}; template<class T, class F>
class SegmentTreeLazy {
int n;
vector<T> node;
vector<F> lazy; void push_down(int rt) {
node[rt << 1] = lazy[rt](node[rt << 1]);
lazy[rt << 1] = lazy[rt](lazy[rt << 1]);
node[rt << 1 | 1] = lazy[rt](node[rt << 1 | 1]);
lazy[rt << 1 | 1] = lazy[rt](lazy[rt << 1 | 1]);
lazy[rt] = F::e();
} void update(int rt, int l, int r, int x, int y, F f) {
if (r < x || y < l) return;
if (x <= l && r <= y) return node[rt] = f(node[rt]), lazy[rt] = f(lazy[rt]), void();
push_down(rt);
int mid = l + r >> 1;
update(rt << 1, l, mid, x, y, f);
update(rt << 1 | 1, mid + 1, r, x, y, f);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
} T query(int rt, int l, int r, int x, int y) {
if (r < x || y < l) return T::e();
if (x <= l && r <= y) return node[rt];
push_down(rt);
int mid = l + r >> 1;
return query(rt << 1, l, mid, x, y) + query(rt << 1 | 1, mid + 1, r, x, y);
} public:
SegmentTreeLazy(int _n = 0) { init(_n); }
SegmentTreeLazy(const vector<T> &src) { init(src); } void init(int _n) {
n = _n;
node.assign(n << 2, T::e());
lazy.assign(n << 2, F::e());
}
void init(const vector<T> &src) {
assert(src.size() >= 2);
init(src.size() - 1);
function<void(int, int, int)> build = [&](int rt, int l, int r) {
if (l == r) return node[rt] = src[l], void();
int mid = l + r >> 1;
build(rt << 1, l, mid);
build(rt << 1 | 1, mid + 1, r);
node[rt] = node[rt << 1] + node[rt << 1 | 1];
};
build(1, 1, n);
} void update(int x, int y, F f) { update(1, 1, n, x, y, f); } T query(int x, int y) { return query(1, 1, n, x, y); }
}; const int N = 100007;
Graph g;
int a[N]; int dfscnt;
int L[N], R[N];
void dfs(int u, int fa) {
L[u] = ++dfscnt;
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v;
if (v == fa) continue;
dfs(v, u);
}
R[u] = ++dfscnt;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
g.init(n, n << 1);
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n - 1;i++) {
int u, v;
cin >> u >> v;
g.add(u, v);
g.add(v, u);
} dfs(1, 0);
vector<T> a_src(dfscnt + 1);
for (int i = 1;i <= n;i++) {
a_src[L[i]] = { 1,a[i] };
a_src[R[i]] = { -1,-a[i] };
}
SegmentTreeLazy<T, F> sgt(a_src); while (m--) {
int op, x;
cin >> op >> x;
if (op == 1) {
int val;
cin >> val;
sgt.update(L[x], L[x], { val });
sgt.update(R[x], R[x], { val });
}
else if (op == 2) {
int val;
cin >> val;
sgt.update(L[x], R[x], { val });
}
else {
cout << sgt.query(L[1], L[x]).sum << '\n';
}
}
return 0;
}

NC19995 [HAOI2015]树上操作的更多相关文章

  1. 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

    [BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...

  2. HAOI2015 树上操作

    HAOI2015 树上操作 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根 ...

  3. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  4. bzoj4034[HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6163  Solved: 2025[Submit][Stat ...

  5. 树剖||树链剖分||线段树||BZOJ4034||Luogu3178||[HAOI2015]树上操作

    题面:P3178 [HAOI2015]树上操作 好像其他人都嫌这道题太容易了懒得讲,好吧那我讲. 题解:第一个操作和第二个操作本质上是一样的,所以可以合并.唯一值得讲的点就是:第二个操作要求把某个节点 ...

  6. P3178 [HAOI2015]树上操作

    P3178 [HAOI2015]树上操作 思路 板子嘛,其实我感觉树剖没啥脑子 就是debug 代码 #include <bits/stdc++.h> #define int long l ...

  7. bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Stat ...

  8. bzoj 4034: [HAOI2015]树上操作 (树剖+线段树 子树操作)

    4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6779  Solved: 2275[Submit][Stat ...

  9. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  10. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

随机推荐

  1. Guava缓存工具类封装和使用

    本文为博主原创,未经允许不得转载: Guava是谷歌提供的一款强大的java工具库,里面包含了很多方便且高效的工具,在项目开发中有业务场景需要保存数据到内存当中, 且只需要保存固定时间就可以,该数据只 ...

  2. Meta AI新发布的超大规模语言模型-OPT-175B

    ​ Meta AI在2022年5月3日新发布的OPT-175B模型,该模型是现阶段第一个模型参数超过千亿级别的开放模型,其次该模型与GPT-3相比,更加开放及便于访问. 具体开放性表现在如下几个方面: ...

  3. Scan Synthesis Review

    Review scan replacement - 将normal DFF替换为mux gate DFF scan stitching - 将DFF连接起来 scan的作用:将测试困难的时序逻辑转变为 ...

  4. 16-集电极开路门(OC门)

    集电极开路门(OC门) OC门 两个与非门,要实现非,一般来讲再与一下就可以. 能不能将输出端并在一起?普通的门电路永远不可能输出端并在一起,连在一起的. TTL与非门输出端连在一起 集电极断开之后连 ...

  5. 上下文中找不到org.springframework.boot.web.servlet.server.ServletWebServerFactory bean

    1.问题 报错如下: Description: Web application could not be started as there was no org.springframework.boo ...

  6. [转帖]Linux 页表、大页与透明大页

    一. 内存映射与页表 1. 内存映射 我们通常所说的内存容量,指的是物理内存,只有内核才可以直接访问物理内存,进程并不可以. Linux 内核给每个进程都提供了一个独立的虚拟地址空间,并且这个地址空间 ...

  7. Nginx与Tomcat作为前端服务器的性能比较

    Nginx与Tomcat作为前端服务器的性能比较 摘要 最近总遇到使用tomcat还是使用nginx进行前端文件访问的争论 想着出差周末在酒店, 可以自己进行一下简单的测试. 希望能够对未来的工作进行 ...

  8. 简单监控Tomcat连接池大小的命令以及其他简单命令

    while true ; do date && echo "当前数据库连接池大小为:" $(jmap -histo `jps |grep caf |awk '{pr ...

  9. React中css的module

    处理css全局作用 现在有这样一个场景: A页面和B页面都有一个相同的类名 我们在A页面中有引入css. B页面没有css 在我们切换A和B页面的时候. A页面的css也作用在了B页面. 我们只希望A ...

  10. TypeScript数组类型定义

    第一种方式:可以在元素类型后面接上 [],表示由此类型元素组成的一个数组: var arr: number[] = [1, 2, 3]; //数字类型的数组 var arr2: string[] = ...