图炸了的话请多刷新几次(upd:8.9)

堆优化模拟退火(List-Based Simulated Annealing) 算法

引入

堆优化模拟退火(List-Based Simulated Annealing,简称 LBSA) 是一种对 模拟退火 的优化算法。由 Shi-hua Zhan,[1],[2] Juan Lin,[1:1] Ze-jun Zhang,[1:2] Yi-wen Zhong[1:3],[2:1] 提出。(以下我们以求最小值为例)

解释

我们定义当前温度为 \(t\) ,已知状态为 \(x\) ,新状态为 \(y\), 能量(值)的计算函数为 \(f\)。根据 模拟退火 可以得到发生状态转移(修改最优解)的概率 \(p\) 为(公式1):

\[p=\begin{cases}
1 & \text{if}\ f(y)\le f(x) \\
\exp({\frac{-(f(y)-f(x))}{t}}) & \text{otherwise}
\end{cases}
\]

相反,如果我们知道发生状态转移的概率 \(p\), 那么我们就可以计算出相应的温度 \(t\)。

证明过程
  1. 首先,将等式两边取对数,得到 \(\ln(p)=\frac{-(f(y)-f(x))}{t}\)。

  2. 然后,将等式两边相乘得到 \(t\ln(p)=-(f(y)-f(x))\)。

  3. 最后,将等式两边除以 \(\ln(p)\) 得到 \(t=\frac{-(f(y)-f(x))}{\ln(p)}\)。

可以得到相应的温度 \(t\) 为(公式2):

\[t=\frac{-(f(y)-f(x))}{\ln(p)}
\]

生成初始温度堆

顾名思义,堆优化,那肯定有堆!其实我们是要生成一个初始的温度堆,里面存储了大量的温度。温度堆怎么生成呢?下图表对此进行了解释:

graph TD
a(温度堆生成开始) --> b[定义初始状态 $x$<br/>创建空的温度堆 $L$<br/>定义温度堆长度 $L$<sub>$max$</sub><br/>定义初始发生状态转移的概率 $p$<br/>$i=0$] --> c[创建新状态 $y$] --> d{"$f(y)<f(x)$ (解更优)"} --NO--> f["计算温度 $t=(-(f(y)-f(x)))/\ln(p)$(公式2)&emsp;&emsp;&emsp;&emsp;<br/>将温度 $t$ 插入温度堆 $L$ 中<br/>$i++$"] --> g{"$i < L$<sub>$max$</sub>"} --Yes-->c
d --Yes--> e["$x=y$(更新状态)"] --> f
g --NO--> h[结束]

(做图表真的累)

我们一般定义 \(p=0.1\)。

这个温度堆为大根堆,即温度越高,优先级越高。重复相同的程序,直到填满。

温度控制

对于第 \(i\) 次模拟退火,我们会跑 \(M\) 次。定义当前温度堆最大值为 \(t_{max}\) ,已知状态与新状态的值差为 \(d_i\),那么发生状态转移的概率 \(p_i\) 为(公式3):

\[p_i=e^{-d_i/t_{max}}
\]

以上可以通过公式 1 得出(应该是一毛一样)。

根据Metropolis算法(Metropolis acceptance criterion),每次遇到一个较差的新状态,生成一个从0到1的随机小数 \(r\)。如果 \(r\) 小于发生状态转移的概率 \(p\),则将接受较差的新状态,同时通过以下公式算出新的温度 \(t_i\)(公式4):

\[t_i=\frac{-d_i}{\ln(r_i)}
\]

证明可参见公式 2 的证明。

更新列表

对于第 \(i\) 次模拟退火,我们跑完 \(M\) 次后,将最大值 \(t_{max}\) 从堆里删去,插入上述 \(t_i\) 的平均值,然后进行下一次模拟退火。

下图表对此进行了详细解释:

graph TD
a(LBSA开始) --> b[生成温度堆<br/>生成状态 $x$<br/>$k=0$] --> c[从温度堆 $L$ 堆顶取出最大值 $T$<sub>$max$</sub><br/>$k++,t=0,c=0,m=0$] --> d[创建新状态 $y$<br/>$m++$] --> e{"$f(y)<f(x)$ (解更优)"} --No--> f["定义$d_i=−(f(y)-f(x))$<br/>$p=exp(-d_i/t$<sub>$max$</sub>$)$(公式3)<br/>生成从0到1的随机数 $r$"] --> g{"$r\le p$"} --Yes--> h["$t=t+(-d_i/\ln(r))$ &emsp;&emsp;&emsp;&emsp;<br/>c++"] --> i["$x=y$ &emsp;&emsp;&emsp;&emsp;"] --> j[$m\le M$] --No--> k{"$c==0?$ &emsp;&emsp;&emsp;&emsp;"} --No--> l["弹出温度堆 $L$ 堆顶<br/>插入 $t/c$"] --> m{$k\le K$} --No--> n(LBSA结束)
e --Yes--> i
g --No--> j
j --Yes--> d
k --Yes--> m
m --Yes--> c

  1. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

  2. Center of Modern Education Technology and Information Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China

堆优化模拟退火(List-Based Simulated Annealing|List-Based SA|LBSA|模拟退火) 算法的更多相关文章

  1. Dijkstra算法堆优化

    转自 https://blog.csdn.net/qq_41754350/article/details/83210517 再求单源最短路径时,算法有优劣之分,个人认为在时间方面 朴素dijkstra ...

  2. 模拟退火 Simulated annealing

    模拟退火 Simulated annealing 看看有空把图片完善一下好了 模拟退火算法的一些背景 既然要说模拟退火算法,就应该说一下模拟退火算法的背景,模拟退火算法是局部搜索算法的一种扩展,该算法 ...

  3. uva10986 堆优化单源最短路径(pas)

    var n,m,s,t,v,i,a,b,c:longint;//这道题的代码不是这个,在下面 first,tr,p,q:..]of longint; next,eb,ew:..]of longint; ...

  4. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  5. 堆优化的Dijkstra

    SPFA在求最短路时不是万能的.在稠密图时用堆优化的dijkstra更加高效: typedef pair<int,int> pii; priority_queue<pii, vect ...

  6. codeforces 449B Jzzhu and Cities (Dij+堆优化)

    输入一个无向图<V,E>    V<=1e5, E<=3e5 现在另外给k条边(u=1,v=s[k],w=y[k]) 问在不影响从结点1出发到所有结点的最短路的前提下,最多可以 ...

  7. POJ 1511 - Invitation Cards 邻接表 Dijkstra堆优化

    昨天的题太水了,堆优化跑的不爽,今天换了一个题,1000000个点,1000000条边= = 试一试邻接表 写的过程中遇到了一些问题,由于习惯于把数据结构封装在 struct 里,结果 int [10 ...

  8. POJ 2502 - Subway Dijkstra堆优化试水

    做这道题的动机就是想练习一下堆的应用,顺便补一下好久没看的图论算法. Dijkstra算法概述 //从0出发的单源最短路 dis[][] = {INF} ReadMap(dis); for i = 0 ...

  9. Bzoj 2834: 回家的路 dijkstra,堆优化,分层图,最短路

    2834: 回家的路 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 62  Solved: 38[Submit][Status][Discuss] D ...

  10. Dij的堆优化

    #include<algorithm> #include<iostream> #include<cstdio> #include<cstring> #i ...

随机推荐

  1. Vue基础介绍

    一.Vue基本介绍 1.Vue.js目前最火的的一个前端框架,三大主流前端框架之一.与其他重量级框架不同的是,Vue采用自底向上增量开发的设计.Vue的核心库只关注视图层. 2.Vue.js是一套构建 ...

  2. 揭秘 .NET 中的 TimerQueue(上)

    前言 TimerQueue 是.NET中实现定时任务的核心组件,它是一个定时任务的管理器,负责存储和调度定时任务.它被用于实现很多 .NET 中的定时任务,比如 System.Threading.Ti ...

  3. 内核源码中单个.o文件的编译过程(六)

    通过对过渡篇的学习,相信你已经具有了相当的知识储备,接下来就来继续学习单个.o文件的编译过程 以/drivers/char/mem.c的编译为例 make /drivers/char/mem.o 一. ...

  4. 使用JMeter连接达梦数据库的步骤和示例

    引言: 本文将介绍如何使用JMeter连接达梦数据库,并提供连接达梦数据库的步骤和示例,帮助您快速开始进行数据库性能测试. 步骤: 1. 下载并安装JMeter:首先,从JMeter官方网站下载并安装 ...

  5. Pandas: 获取dataframe中的值,并转换为列表

    解决方案 效果

  6. 链表/栈/队列/KMP

    链表 用数组模拟,不同于结构体加指针 调用new关键字开上万级别的节点非常慢,基本会超时 单链表 来构造邻接表 用于存图与树 基本结构: head 表示头结点的下标 e[i] 表示节点i的值 ne[i ...

  7. 但因热爱,愿迎万难,OpenTiny 社区增加一枚前端程序媛贡献者🎉

    我们非常高兴地宣布,OpenTiny Vue Playground 正式上线! 链接:https://opentiny.github.io/tiny-vue-playground/ 在此非常感谢 xi ...

  8. 【go笔记】TCP编程

    前言 TCP服务端的处理流程 监听端口 接收客户端请求建立连接 创建goroutine处理链接 示例代码:TCP服务端 package main import ( "net" &q ...

  9. 何时使用Elasticsearch而不是MySql

    MySQL 和 Elasticsearch 是两种不同的数据管理系统,它们各有优劣,适用于不同的场景.本文将从以下几个方面对它们进行比较和分析: 数据模型 查询语言 索引和搜索 分布式和高可用 性能和 ...

  10. 基于python tornado实现的简易图床

    基于python tornado实现的简易图床 项目地址 因为买了阿里/腾讯的云服务器,但是使用云存储还需要收费,又加上家里正好有一台nas,又加上闲的没事,所以搞了一个小脚本 这个项目主要功能是为t ...