图炸了的话请多刷新几次(upd:8.9)

堆优化模拟退火(List-Based Simulated Annealing) 算法

引入

堆优化模拟退火(List-Based Simulated Annealing,简称 LBSA) 是一种对 模拟退火 的优化算法。由 Shi-hua Zhan,[1],[2] Juan Lin,[1:1] Ze-jun Zhang,[1:2] Yi-wen Zhong[1:3],[2:1] 提出。(以下我们以求最小值为例)

解释

我们定义当前温度为 \(t\) ,已知状态为 \(x\) ,新状态为 \(y\), 能量(值)的计算函数为 \(f\)。根据 模拟退火 可以得到发生状态转移(修改最优解)的概率 \(p\) 为(公式1):

\[p=\begin{cases}
1 & \text{if}\ f(y)\le f(x) \\
\exp({\frac{-(f(y)-f(x))}{t}}) & \text{otherwise}
\end{cases}
\]

相反,如果我们知道发生状态转移的概率 \(p\), 那么我们就可以计算出相应的温度 \(t\)。

证明过程
  1. 首先,将等式两边取对数,得到 \(\ln(p)=\frac{-(f(y)-f(x))}{t}\)。

  2. 然后,将等式两边相乘得到 \(t\ln(p)=-(f(y)-f(x))\)。

  3. 最后,将等式两边除以 \(\ln(p)\) 得到 \(t=\frac{-(f(y)-f(x))}{\ln(p)}\)。

可以得到相应的温度 \(t\) 为(公式2):

\[t=\frac{-(f(y)-f(x))}{\ln(p)}
\]

生成初始温度堆

顾名思义,堆优化,那肯定有堆!其实我们是要生成一个初始的温度堆,里面存储了大量的温度。温度堆怎么生成呢?下图表对此进行了解释:

graph TD
a(温度堆生成开始) --> b[定义初始状态 $x$<br/>创建空的温度堆 $L$<br/>定义温度堆长度 $L$<sub>$max$</sub><br/>定义初始发生状态转移的概率 $p$<br/>$i=0$] --> c[创建新状态 $y$] --> d{"$f(y)<f(x)$ (解更优)"} --NO--> f["计算温度 $t=(-(f(y)-f(x)))/\ln(p)$(公式2)&emsp;&emsp;&emsp;&emsp;<br/>将温度 $t$ 插入温度堆 $L$ 中<br/>$i++$"] --> g{"$i < L$<sub>$max$</sub>"} --Yes-->c
d --Yes--> e["$x=y$(更新状态)"] --> f
g --NO--> h[结束]

(做图表真的累)

我们一般定义 \(p=0.1\)。

这个温度堆为大根堆,即温度越高,优先级越高。重复相同的程序,直到填满。

温度控制

对于第 \(i\) 次模拟退火,我们会跑 \(M\) 次。定义当前温度堆最大值为 \(t_{max}\) ,已知状态与新状态的值差为 \(d_i\),那么发生状态转移的概率 \(p_i\) 为(公式3):

\[p_i=e^{-d_i/t_{max}}
\]

以上可以通过公式 1 得出(应该是一毛一样)。

根据Metropolis算法(Metropolis acceptance criterion),每次遇到一个较差的新状态,生成一个从0到1的随机小数 \(r\)。如果 \(r\) 小于发生状态转移的概率 \(p\),则将接受较差的新状态,同时通过以下公式算出新的温度 \(t_i\)(公式4):

\[t_i=\frac{-d_i}{\ln(r_i)}
\]

证明可参见公式 2 的证明。

更新列表

对于第 \(i\) 次模拟退火,我们跑完 \(M\) 次后,将最大值 \(t_{max}\) 从堆里删去,插入上述 \(t_i\) 的平均值,然后进行下一次模拟退火。

下图表对此进行了详细解释:

graph TD
a(LBSA开始) --> b[生成温度堆<br/>生成状态 $x$<br/>$k=0$] --> c[从温度堆 $L$ 堆顶取出最大值 $T$<sub>$max$</sub><br/>$k++,t=0,c=0,m=0$] --> d[创建新状态 $y$<br/>$m++$] --> e{"$f(y)<f(x)$ (解更优)"} --No--> f["定义$d_i=−(f(y)-f(x))$<br/>$p=exp(-d_i/t$<sub>$max$</sub>$)$(公式3)<br/>生成从0到1的随机数 $r$"] --> g{"$r\le p$"} --Yes--> h["$t=t+(-d_i/\ln(r))$ &emsp;&emsp;&emsp;&emsp;<br/>c++"] --> i["$x=y$ &emsp;&emsp;&emsp;&emsp;"] --> j[$m\le M$] --No--> k{"$c==0?$ &emsp;&emsp;&emsp;&emsp;"} --No--> l["弹出温度堆 $L$ 堆顶<br/>插入 $t/c$"] --> m{$k\le K$} --No--> n(LBSA结束)
e --Yes--> i
g --No--> j
j --Yes--> d
k --Yes--> m
m --Yes--> c

  1. College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

  2. Center of Modern Education Technology and Information Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China

堆优化模拟退火(List-Based Simulated Annealing|List-Based SA|LBSA|模拟退火) 算法的更多相关文章

  1. Dijkstra算法堆优化

    转自 https://blog.csdn.net/qq_41754350/article/details/83210517 再求单源最短路径时,算法有优劣之分,个人认为在时间方面 朴素dijkstra ...

  2. 模拟退火 Simulated annealing

    模拟退火 Simulated annealing 看看有空把图片完善一下好了 模拟退火算法的一些背景 既然要说模拟退火算法,就应该说一下模拟退火算法的背景,模拟退火算法是局部搜索算法的一种扩展,该算法 ...

  3. uva10986 堆优化单源最短路径(pas)

    var n,m,s,t,v,i,a,b,c:longint;//这道题的代码不是这个,在下面 first,tr,p,q:..]of longint; next,eb,ew:..]of longint; ...

  4. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  5. 堆优化的Dijkstra

    SPFA在求最短路时不是万能的.在稠密图时用堆优化的dijkstra更加高效: typedef pair<int,int> pii; priority_queue<pii, vect ...

  6. codeforces 449B Jzzhu and Cities (Dij+堆优化)

    输入一个无向图<V,E>    V<=1e5, E<=3e5 现在另外给k条边(u=1,v=s[k],w=y[k]) 问在不影响从结点1出发到所有结点的最短路的前提下,最多可以 ...

  7. POJ 1511 - Invitation Cards 邻接表 Dijkstra堆优化

    昨天的题太水了,堆优化跑的不爽,今天换了一个题,1000000个点,1000000条边= = 试一试邻接表 写的过程中遇到了一些问题,由于习惯于把数据结构封装在 struct 里,结果 int [10 ...

  8. POJ 2502 - Subway Dijkstra堆优化试水

    做这道题的动机就是想练习一下堆的应用,顺便补一下好久没看的图论算法. Dijkstra算法概述 //从0出发的单源最短路 dis[][] = {INF} ReadMap(dis); for i = 0 ...

  9. Bzoj 2834: 回家的路 dijkstra,堆优化,分层图,最短路

    2834: 回家的路 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 62  Solved: 38[Submit][Status][Discuss] D ...

  10. Dij的堆优化

    #include<algorithm> #include<iostream> #include<cstdio> #include<cstring> #i ...

随机推荐

  1. C语言指针--指针中的const

    文章目录 前言 一.const 1.什么是const 2.const的使用 二.const修饰一级指针 1.const放在 `*` 左边 2.const在`*`右边 三.const修饰二级指针 1.c ...

  2. Redis的五大数据类型及其使用场景

    前言 redis是一个非常快速‎‎的非关系数据库‎‎解决方案.其简单的键值数据模型使 Redis 能够处理大型数据集,同时保持令人印象深刻的读写速度和可用性.‎redis提供了五种数据类型,分别是是: ...

  3. DevOps|服务治理与服务保障实践指南

    朱晋君@君哥聊技术 我自己为了消化里边的内容,整理了一个脑图,希望对你有帮助. 凌晨四点被公司的监控告警叫醒了,告警的原因是生产环境跑批任务发生故障.即刻起床处理故障,但还是花了不少时间才解决. 这次 ...

  4. SqlSugar本地缓存查询实现方式

    有C#的国产ORM SqlSugar 好久了,实在话还不错,不过毕竟是早期产物不能过分要求规范化,有些项目查询语句需要用到缓存,官方是redis,我写了个本地缓存借助ConcurrentBag,因为有 ...

  5. 【pandas小技巧】--修改列的名称

    重命名 pandas 数据中列的名称是一种常见的数据预处理任务.这通常是因为原始数据中的列名称可能不够清晰或准确.例如,列名可能包含空格.大写字母.特殊字符或拼写错误. 使用 pandas 的 ren ...

  6. 关于3D-AIGC的调研与探讨

    0.前言 本文是自己最近在项目上的需要做的一些调研和自己的一些看法,以分享为主. 2D AIGC(文生文.文生图.图生图)在今天大放异彩,产生了许多惊艳的效果,如ChatGPT系列.Imagen.DA ...

  7. vue3探索——组件通信之事件总线

    Vue2.x使用EventBus进行组件通信,而Vue3.x推荐使用mitt.js. 比起Vue实例上的EventBus,mitt.js好在哪里呢?首先它足够小,仅有200bytes,其次支持全部事件 ...

  8. module.exports和exports,应该用哪个

    在 Node.js 编程中,模块是独立的功能单元,可以在项目间共享和重用.作为开发人员,模块让我们的生活更轻松,因为我们可以使用模块来增强应用程序的功能,而无需亲自编写.它们还允许我们组织和解耦代码, ...

  9. 10分钟理解契约测试及如何在C#中实现

    在软件开发中,确保微服务和API的可靠性和稳定性非常重要. 随着应用程序变得越来越复杂,对强大的测试策略的需求也越来越大,这些策略可以帮助团队在不牺牲敏捷性的情况下交付高质量的代码. 近年来获得广泛关 ...

  10. MySQL 分表查询

    分表是一种数据库分割技术,用于将大表拆分成多个小表,以提高数据库的性能和可管理性.在MySQL中,可以使用多种方法进行分表,例如基于范围.哈希或列表等.下面将详细介绍MySQL如何分表以及分表后如何进 ...