大数据之Hadoop集群中MapReduce的Join操作
需求分析
如下两张输入表格
order表
| id | pid | amount |
|---|---|---|
| 1001 | 01 | 1 |
| 1002 | 02 | 2 |
| 1003 | 03 | 3 |
| 1004 | 01 | 4 |
| 1005 | 02 | 5 |
| 1006 | 03 | 6 |
pd表
| pid | pname |
|---|---|
| 01 | 小米 |
| 02 | 华为 |
| 03 | 格力 |
将商品信息表中数据根据商品pid合并的订单数据表中。原文:sw-code
| id | pname | amount |
|---|---|---|
| 1001 | 小米 | 1 |
| 1004 | 小米 | 4 |
| 1002 | 华为 | 2 |
| 1005 | 华为 | 5 |
| 1003 | 格力 | 3 |
| 1006 | 格力 | 6 |
Reduce Join
创建一个TableBean对象,其包含两个文件的所有属性,方便在map阶段封装数据
public class TableBean implements Writable {
private String id;
private String pid;
private Integer amount;
private String pname;
private String flag;
public TableBean() {
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public String getPid() {
return pid;
}
public void setPid(String pid) {
this.pid = pid;
}
public Integer getAmount() {
return amount;
}
public void setAmount(Integer amount) {
this.amount = amount;
}
public String getPname() {
return pname;
}
public void setPname(String pname) {
this.pname = pname;
}
public String getFlag() {
return flag;
}
public void setFlag(String flag) {
this.flag = flag;
}
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeUTF(id);
dataOutput.writeUTF(pid);
dataOutput.writeInt(amount);
dataOutput.writeUTF(pname);
dataOutput.writeUTF(flag);
}
@Override
public void readFields(DataInput dataInput) throws IOException {
this.id = dataInput.readUTF();
this.pid = dataInput.readUTF();
this.amount = dataInput.readInt();
this.pname = dataInput.readUTF();
this.flag = dataInput.readUTF();
}
@Override
public String toString() {
return id + '\t' + pname + '\t' + amount;
}
}
在map阶段根据文件名来区分加载对象,setup方法一个文件只会执行一次,在该方法中获取文件名称,在map方法中根据文件名来执行不同的操作,值得注意的是属性不能为默认的NULL。
public class TableMapper extends Mapper<LongWritable, Text, Text, TableBean> {
private String filename;
private Text outK = new Text();
private TableBean outV = new TableBean();
@Override
protected void setup(Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
// 初始化
FileSplit inputSplit = (FileSplit) context.getInputSplit();
filename = inputSplit.getPath().getName();
}
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, TableBean>.Context context) throws IOException, InterruptedException {
String line = value.toString();
//判断是哪个文件
if (filename.contains("order")) {
String[] split = line.split("\t");
// 封装k v
outK.set(split[1]);
outV.setId(split[0]);
outV.setPid(split[1]);
outV.setAmount(Integer.parseInt(split[2]));
outV.setPname("");
outV.setFlag("order");
} else {
String[] split = line.split("\t");
// 封装k v
outK.set(split[0]);
outV.setId("");
outV.setPid(split[0]);
outV.setAmount(0);
outV.setPname(split[1]);
outV.setFlag("pd");
}
//写出
context.write(outK, outV);
}
}
由于使用pid为key,两个表中相同的pid会进入同一个reduce,再根据flag判断是哪个表中的数据,如果是order将其保存到数组中,如果是pd则获取其pname,循环order数组赋值。值得注意的是,由于values并非Java中默认的迭代器,如果只是add(value)赋值的是地址,无法达到预期要求。
public class TableReducer extends Reducer<Text, TableBean, TableBean, NullWritable> {
@Override
protected void reduce(Text key, Iterable<TableBean> values, Reducer<Text, TableBean, TableBean, NullWritable>.Context context) throws IOException, InterruptedException {
ArrayList<TableBean> orderBeans = new ArrayList<>();
TableBean pBean = new TableBean();
for (TableBean value : values) {
if ("order".equals(value.getFlag())) {
TableBean tempTableBean = new TableBean();
try {
BeanUtils.copyProperties(tempTableBean, value);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
orderBeans.add(tempTableBean);
} else {
try {
BeanUtils.copyProperties(pBean, value);
} catch (IllegalAccessException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}
}
// 遍历orderBeans
for (TableBean orderBean : orderBeans) {
orderBean.setPname(pBean.getPname());
context.write(orderBean, NullWritable.get());
}
}
}
总结:如果数据量非常大,所有的压力都会来到reduce阶段,这样会导致数据倾斜。为了防止发生,可以将Join操作放到map阶段,因为map阶段处理的数据都是块大小128M。
Map Join
Map Join适用与一张十分小、一张很大的表的场景
在Map端缓存多张表,提前处理业务逻辑,这样增加Map端业务,减少Reduce端数据的压力,尽可能的减少数据倾斜。
采用DistributedCache的方法:
(1)在Mapper的setup阶段,将文件读取到缓存集合中
(2)在Driver驱动类中加载缓存
// 缓存普通文件到Task运行节点
job.addCacheFile(new URI("file:///e:/cache/pd.txt"));
// 如果是集群运行,需要设置HDFS路径
job.addCacheFile(new URI("hdfs://hadoop102:8020/cache/pd.txt"));
实操案例
Mapper
public class MapJoinMapper extends Mapper<LongWritable, Text, Text, NullWritable> {
private HashMap<String, String> pdMap = new HashMap<>();
private Text outK = new Text();
@Override
protected void setup(Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
// 获取缓存文件,并把文件内容封装到集合中 pd.txt
URI[] cacheFiles = context.getCacheFiles();
URI cacheFile = cacheFiles[0];
FileSystem fs = FileSystem.get(context.getConfiguration());
FSDataInputStream fis = fs.open(new Path(cacheFile));
// 从流中读取数据
BufferedReader reader = new BufferedReader(new InputStreamReader(fis, "UTF-8"));
String line;
while (StringUtils.isNotEmpty(line=reader.readLine())) {
// 切割
String[] fields = line.split("\t");
pdMap.put(fields[0], fields[1]);
}
IOUtils.closeStream(reader);
}
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
// 处理 order.txt
String line = value.toString();
String[] split = line.split("\t");
String pName = pdMap.get(split[1]);
outK.set(split[0] + "\t" + pName + "\t" + split[2]);
context.write(outK, NullWritable.get());
}
}
Driver
public static void main(String[] args) throws IOException, URISyntaxException, InterruptedException, ClassNotFoundException {
Job job = Job.getInstance(new Configuration());
job.setMapperClass(MapJoinMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
job.addCacheFile(new URI("file:///D:/hadoop/input/mapjoincache/pd.txt"));
// 不需要reduce阶段
job.setNumReduceTasks(0);
FileInputFormat.setInputPaths(job, new Path("D:\\hadoop\\input\\mapjoin"));
FileOutputFormat.setOutputPath(job, new Path("D:\\hadoop\\output\\mapjoin"));
boolean b = job.waitForCompletion(true);
System.exit(b?0:1);
}
}
下篇文章:
相关文章:
大数据之Hadoop集群中Yarn常用命令
大数据之Hadoop集群的HDFS压力测试
大数据之Hadoop集群中MapReduce的Join操作的更多相关文章
- 大数据测试之hadoop集群配置和测试
大数据测试之hadoop集群配置和测试 一.准备(所有节点都需要做):系统:Ubuntu12.04java版本:JDK1.7SSH(ubuntu自带)三台在同一ip段的机器,设置为静态IP机器分配 ...
- 大数据学习——HADOOP集群搭建
4.1 HADOOP集群搭建 4.1.1集群简介 HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起 HDFS集群: 负责海量数据的存储,集群中的角色主 ...
- 大数据平台Hadoop集群搭建
一.概念 Hadoop是由java语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,其核心部件是HDFS与MapReduce.HDFS是一个分布式文件系统,类似mogilef ...
- Java+大数据开发——Hadoop集群环境搭建(一)
1集群简介 HADOOP集群具体来说包含两个集群:HDFS集群和YARN集群,两者逻辑上分离,但物理上常在一起 HDFS集群: 负责海量数据的存储,集群中的角色主要有 NameNode / DataN ...
- Java+大数据开发——Hadoop集群环境搭建(二)
1. MAPREDUCE使用 mapreduce是hadoop中的分布式运算编程框架,只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现一个强大的海量数据并发处理程序 2. Demo开发--wo ...
- 大数据之hadoop集群安全模式
集群安全模式1.概述(1)NameNode启动 NameNode启动时,首先将镜像文件(Fsimage)载入内存,并执行编辑日志(Edits)中的各项操作.-旦在内存中成功建立文件系统元数据的影像,则 ...
- 大数据学习——hadoop集群搭建2.X
1.准备Linux环境 1.0先将虚拟机的网络模式选为NAT 1.1修改主机名 vi /etc/sysconfig/network NETWORKING=yes HOSTNAME=itcast ### ...
- CDH构建大数据平台-配置集群的Kerberos认证安全
CDH构建大数据平台-配置集群的Kerberos认证安全 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 当平台用户使用量少的时候我们可能不会在一集群安全功能的缺失,因为用户少,团 ...
- 朝花夕拾之--大数据平台CDH集群离线搭建
body { border: 1px solid #ddd; outline: 1300px solid #fff; margin: 16px auto; } body .markdown-body ...
- Hadoop集群中添加硬盘
Hadoop工作节点扩展硬盘空间 接到老板任务,Hadoop集群中硬盘空间不够用,要求加一台机器到Hadoop集群,并且每台机器在原有基础上加一块2T硬盘,老板给力啊,哈哈. 这些我把完成这项任务的步 ...
随机推荐
- HMS Core分析服务智能运营6.5.1版本上线
HMS Core分析服务智能运营6.5.1版本上线,三大"更"新,助力开发者提升运营体验. 1.活动效果更前置:支持受众预估,提前判断活动效果: 2.活动流程更规范:新增活动审核功 ...
- MogDB/OpenGauss数据库中通过参数控制抓取慢sql
MogDB/OpenGauss 数据库中通过参数控制抓取慢 sql 本文出处:https://www.modb.pro/db/221556 mogdb 数据库中可以通过打开相应的参数抓取慢 sql,该 ...
- 【鸿蒙千帆起】高德地图携手HarmonyOS NEXT,开启智能出行新篇章
2024年1月18日下午,华为举办了鸿蒙生态千帆启航仪式,对外宣布HarmonyOS NEXT星河预览版现已开放申请,同时,首批200+鸿蒙原生应用加速开发,鸿蒙生态设备数量更是突破了8亿大关.这些进 ...
- ContOS7搭建RAID-0磁盘阵列
RAID-0条带数据: 优点:2块硬盘同时在写数据,而且各写各的不影响,速度较快:性能提升2倍(理论): 缺点:服务器硬盘特别容易损坏,一点损坏一个,其余不能用:没有容错性:服务器用的不多,都是配合使 ...
- CentOS 编译安装golang
一.下载go wget https://studygolang.com/dl/golang/go1.16.4.linux-amd64.tar.gz 二.解压到指定目录 tar -xvf go1.16. ...
- 抓包整理————tcpdump过滤器[七]
前言 简单介绍一下tcpdump 正文 这里可以tcpdump -D 可以列出各个网卡的信息: 默认抓取eth0,也就是第一个: 还有下面的选项: -D 举例所有的网卡设备 -i 选择网卡设备 -c ...
- sql 语句系列(计算的进阶)[八百章之第十六章]
前言 介绍两个实用的sql查询语句. 1.计算平均数时候,去除最大值和最小值. 2.修改累计值. 计算平均数时候,去除最大值和最小值 sql server: select AVG(sal) from( ...
- c# TryParse
c# tryparse和parse对比,大体内容是一致的. parse 会返回异常,主要表现为三种. 第一种ArgumentNullException,这里面表示,为空. 第二种formatexcep ...
- spring boot oauth2 取消认证
最近有一个项目需要从微服务中抽离,但是因为调用的包里关联了认证所以就算抽离处理还是会进oauth2默认的登入页面: @SpringBootApplication(exclude = {EurekaCl ...
- 5款开源、美观、强大的WPF UI组件库
前言 经常看到有小伙伴在DotNetGuide技术社区交流群里提问:WPF有什么好用或者好看的UI组件库?,今天大姚给大家分享5款开源.美观.强大.简单易用的WPF UI组件库. WPF介绍 WPF ...