代码随想录算法训练营Day45 动态规划
代码随想录算法训练营
代码随想录算法训练营Day45 动态规划|70. 爬楼梯(进阶) 322. 零钱兑换
70. 爬楼梯 (进阶)
题目链接:70. 爬楼梯 (进阶
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1: 输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
总体思路
本题稍加改动就是一道面试好题。
改为:一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?
1阶,2阶,.... m阶就是物品,楼顶就是背包。
每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。
问跳到楼顶有几种方法其实就是问装满背包有几种方法。
此时大家应该发现这就是一个完全背包问题了!
动规五部曲分析如下:
- 确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。 - 确定递推公式
在动态规划:494.目标和 、 动态规划:518.零钱兑换II、动态规划:377. 组合总和 Ⅳ中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j] - dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果 - 确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。 - 举例来推导dp数组
本题和动态规划:377. 组合总和 Ⅳ几乎是一样的,这里就不再重复举例了。
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n + 1, 0);
dp[0] = 1;
for (int i = 1; i <= n; i++) { // 遍历背包
for (int j = 1; j <= m; j++) { // 遍历物品
if (i - j >= 0) dp[i] += dp[i - j];
}
}
return dp[n];
}
};
322. 零钱兑换
题目链接:322. 零钱兑换
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
示例 1:
- 输入:coins = [1, 2, 5], amount = 11
- 输出:3
- 解释:11 = 5 + 5 + 1
总体思路
题目中说每种硬币的数量是无限的,可以看出是典型的完全背包问题。
动规五部曲分析如下:
- 确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j] - 确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]); - dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。
代码如下:
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
- 确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
所以本题并不强调集合是组合还是排列。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
在动态规划专题我们讲过了求组合数是动态规划:518.零钱兑换II,求排列数是动态规划:377. 组合总和 Ⅳ。
所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!
那么我采用coins放在外循环,target在内循环的方式。
本题钱币数量可以无限使用,那么是完全背包。所以遍历的内循环是正序
综上所述,遍历顺序为:coins(物品)放在外循环,target(背包)在内循环。且内循环正序。 - 举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例
dp[amount]为最终结果。
// 版本一
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount + 1, INT_MAX);
dp[0] = 0;
for (int i = 0; i < coins.size(); i++) { // 遍历物品
for (int j = coins[i]; j <= amount; j++) { // 遍历背包
if (dp[j - coins[i]] != INT_MAX) { // 如果dp[j - coins[i]]是初始值则跳过
dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
}
}
}
if (dp[amount] == INT_MAX) return -1;
return dp[amount];
}
};
代码随想录算法训练营Day45 动态规划的更多相关文章
- 代码随想录算法训练营day01 | leetcode 704/27
前言 考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...
- 代码随想录算法训练营day02 | leetcode 977/209/59
leetcode 977 分析1.0: 要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...
- 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点
LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0 二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...
- 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和
LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...
- 代码随想录算法训练营day13
基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...
- 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素
基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...
- 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈
基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...
- 代码随想录算法训练营day06 | leetcode 242、349 、202、1
基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...
- 代码随想录算法训练营day03 | LeetCode 203/707/206
基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...
- 代码随想录算法训练营day24 | leetcode 77. 组合
基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...
随机推荐
- GPT-4 来了!这些开源的 GPT 应用又要变强了
近日,在 GPT-3.5 发布的半年后,OpenAI 正式推出了大版本的 GPT-4,不同于 GPT-3 到 GPT-3.5 耗时两年,这次版本升级只用了半年.如果你对 OpenAI 不熟悉,答应我读 ...
- ChannelInboundHandlerAdapter 与 SimpleChannelInboundHandler 功能详解
SimpleChannelInboundHandler [类的关系]:如下就是两个类的声明,SimpleChannelInboundHandler是继承 ChannelInboundHandlerAd ...
- 用 Go 剑指 Offer 09. 用两个栈实现队列
用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,deleteHea ...
- RFM客户分类模型的应用——R语言
RFM模型是衡量客户价值和客户创造利益能力的重要工具和手段.在众多的客户关系管理(CRM)的分析模式中,RFM模型是被广泛提到的.该机械模型通过一个客户的近期购买行为.购买的总体频率以及花了多少钱3项 ...
- 五月二十六日jdbc算法以及数据库
1.在PreparedStatement创建SQL对象后,调用preparedStatement()方法时,通过占位符?来按照索引进行SQL语句动态执行通过setString()方法和setInt() ...
- Redis使用之缓存清除
1. Redis到期缓存清除策略(三种) 定时删除:在设置key的过期时间的同时,为该key创建一个定时器,让定时器在key的过期时间来临时,对key进行删除. 优点:定时删除策略对内存是友好的,通过 ...
- xtrabackup8.0.27备份失败
问题描述:mysql8.0.27备份出现中断,重新备份发现xtrabackup备份失败,xtrabackup与mysql版本不匹配,后来想起来时mysql进行了升级,8.0.27->8.0.29 ...
- 安装vue-lic
vue-cli是Vue.js开发的标准工具.它简化了程序员基于webppack创建工程化的Vue项目的过程.引用自vue-cli官网上的一句话:程序员可以专注在撰写应用上,而不必花好几天去纠结webp ...
- NLP入门1——李宏毅网课笔记
近日因为项目需要,开始恶补预习NLP的相关知识.以前也看过两本相关书籍,但是都十分浅显.这次准备详细的学一下并记录. 李宏毅老师的网课是 Deep Learning for Human Languag ...
- 为什么数据库project被做成了web开发啊啊——一个半小时实现增删查改
昨天晚上去小破站上找了一点点~~亿点点~~资料,仔细研究了一下我们项目说明文档里的restful框架,发现可以直接用django_restful_framework. 天大的好消息啊!今天下午有三个小 ...