Description

最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律。 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每个i,都有APi>=BPi),但是每天不能无限制地交易,于是股票交易所规定第i天的一次买入至多只能购买ASi股,一次卖出至多只能卖出BSi股。 另外,股票交易所还制定了两个规定。为了避免大家疯狂交易,股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔W天,也就是说如果在第i天发生了交易,那么从第i+1天到第i+W天,均不能发生交易。同时,为了避免垄断,股票交易所还规定在任何时间,一个人的手里的股票数不能超过MaxP。 在第1天之前,lxhgww手里有一大笔钱(可以认为钱的数目无限),但是没有任何股票,当然,T天以后,lxhgww想要赚到最多的钱,聪明的程序员们,你们能帮助他吗?

Input

输入数据第一行包括3个整数,分别是T,MaxP,W。 接下来T行,第i行代表第i-1天的股票走势,每行4个整数,分别表示APi,BPi,ASi,BSi。

Output

输出数据为一行,包括1个数字,表示lxhgww能赚到的最多的钱数。

Sample Input

5 2 0
2 1 1 1
2 1 1 1
3 2 1 1
4 3 1 1
5 4 1 1

Sample Output

3

HINT

对于30%的数据,0 < =W 对于50%的数据,0 < =W 对于100%的数据,0 < =W 
对于所有的数据,1 < =BPi < =APi < =1000,1 < =ASi,BSi < =MaxP

/*
f[i][j]表示到了第i天手里有j张股票的最大收益。
容易写出转移方程:
不买不卖:f[i][j]=f[i-1][j]
买入:f[i][j]=f[i-w-1][k]-(j-k)*ap[i]
卖出:f[i][j]=f[i-w-1][k]+(k-j)*bp[i] 对于买入,我们对其变形:
f[i][j]=f[i-w-1][k]+k*ap[i]-j*ap[i]
这样就可以用单调队列维护f[i-w-1][k]+k*ap[i]进行优化,卖出同理。
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#define N 2010
using namespace std;
int ap[N],bp[N],as[N],bs[N],q[N],f[N][N],t,maxp,w;
int main(){
scanf("%d%d%d",&t,&maxp,&w);
for(int i=;i<=t;i++)
scanf("%d%d%d%d",&ap[i],&bp[i],&as[i],&bs[i]);
memset(f,-/,sizeof(f));
for(int i=;i<=t;i++){
for(int j=;j<=as[i];j++) f[i][j]=-ap[i]*j;
for(int j=;j<=maxp;j++) f[i][j]=max(f[i][j],f[i-][j]);
int k=i-w-;
if(k<) continue;
int head=,tail=;
for(int j=;j<=maxp;j++){
while(head<tail&&q[head]<j-as[i]) head++;
while(head<tail&&f[k][j]+j*ap[i]>=f[k][q[tail-]]+q[tail-]*ap[i])tail--;
q[tail++]=j;
f[i][j]=max(f[i][j],f[k][q[head]]-ap[i]*(j-q[head]));
}
head=,tail=;
for(int j=maxp;j>=;j--){
while(head<tail&&q[head]>j+bs[i])head++;
while(head<tail&&f[k][j]+j*bp[i]>=f[k][q[tail-]]+q[tail-]*bp[i])tail--;
q[tail++]=j;
f[i][j]=max(f[i][j],f[k][q[head]]+bp[i]*(q[head]-j));
}
}
printf("%d",f[t][]);
return ;
}

股票交易(bzoj 1855)的更多相关文章

  1. 单调队列优化DP || [SCOI2010]股票交易 || BZOJ 1855 || Luogu P2569

    题面:P2569 [SCOI2010]股票交易 题解: F[i][j]表示前i天,目前手中有j股的最大收入Case 1:第i天是第一次购买股票F[i][j]=-j*AP[i]; (1<=j< ...

  2. [BZOJ 1855] 股票交易

    Link: BZOJ 1855 传送门 Solution: 比较明显的$dp$模型 令$dp[i][j]$为第$i$天持有$j$支股票时的最大利润 对其购买股票和售出股票分别$dp$,这里以购买为例: ...

  3. BZOJ 1855: [Scoi2010]股票交易(DP+单调队列)

    1855: [Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未 ...

  4. BZOJ 1855 股票交易(单调队列优化DP)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1855 题意:最近lxhgww又迷上了投资股票, 通过一段时间的观察和学习,他总结出了股票 ...

  5. ●BZOJ 1855 [Scoi2010]股票交易

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1855 题解: DP,单调队列优化.(好久没做 DP题,居然还意外地想出来了) 定义 dp[i ...

  6. bzoj 1855: [Scoi2010]股票交易

    Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...

  7. BZOJ 1855 股票交易 (算竞进阶习题)

    单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...

  8. BZOJ 1855 [Scoi2010]股票交易 ——动态规划

    DP方程是比较简单的,主要有三种:什么都不做.买入.卖出. 发现买入卖出都是$\Theta (n^3)$但是转移方程都是线性的,而且决策和当前的情况是分开的. 所以可以单调队列优化. 复杂度$\The ...

  9. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

随机推荐

  1. 二十七、MySQL 复制表

    MySQL 复制表 如果我们需要完全的复制MySQL的数据表,包括表的结构,索引,默认值等. 如果仅仅使用CREATE TABLE ... SELECT 命令,是无法实现的. 本章节将为大家介绍如何完 ...

  2. JZOJ 5775. 【NOIP2008模拟】农夫约的假期

    5775. [NOIP2008模拟]农夫约的假期 (File IO): input:shuru.in output:shuru.out Time Limits: 1000 ms  Memory Lim ...

  3. 南阳 ACM16 矩形嵌套 动态规划

    矩形嵌套 时间限制:3000 ms  |           内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c, ...

  4. 如何拿到半数面试公司Offer——我的Python求职之路(转)

    从八月底开始找工作,短短的一星期多一些,面试了9家公司,拿到5份Offer,可能是因为我所面试的公司都是些创业性的公司吧,不过还是感触良多,因为学习Python的时间还很短,没想到还算比较容易的找到了 ...

  5. Go语言之并发编程(一)

    轻量级线程(goroutine) 在编写socket网络程序时,需要提前准备一个线程池为每一个socket的收发包分配一个线程.开发人员需要在线程数量和CPU数量间建立一个对应关系,以保证每个任务能及 ...

  6. 关于前后端日期处理 开发注意事项 jquery.tmpl()函数的使用

    1当后端将日期传到前段的时候 我们通常会需要将日期转为制定格式 除了平常我们使用的前段插件将日期转好 spring @datetimeFormat 注解 这些形式外 我们还可以在实体里通过get方法进 ...

  7. WampServer配置说明

    注意:所有的修改操作都要重启WampServer服务器,部分需要重启WampServer软件 1.修改默认端口 1)打开文件:C:\wamp\bin\apache\apache2.4.9\conf\h ...

  8. alert(1) to win部分解题

    XSS在线习题分析 (https://alf.nu/alert1) 1. Warmup function escape(s) { return '<script>console.log(& ...

  9. 集训队日常训练20181117 DIV2

    大佬们一顿操作猛如虎,拼命AC强啊 4262: 区间异或  Time Limit(Common/Java):1000MS/3000MS     Memory Limit:65536KByteTotal ...

  10. 基于 Spring 和 iBATIS 的动态可更新多数据源持久层

    前言 我们时常会遇到一些 web 项目,需要从不同的数据源中抓取数据来进行分析,而这些数据源是有可能变化的,需要用户来进行动态的维护和添加.可是,大多数的 web 程序使用了应用服务器或者容器中间件来 ...