Google Code Jam 2008 Round 1A C Numbers(矩阵快速幂+化简方程,好题)
Problem C. Numbers
| Small input 15 points |
Solve C-small |
|
Large input 35 points |
Solve C-large |
Problem
In this problem, you have to find the last three digits before the decimal point for the number (3 + √5)n.
For example, when n = 5, (3 + √5)5 = 3935.73982... The answer is 935.
For n = 2, (3 + √5)2 = 27.4164079... The answer is 027.
Input
The first line of input gives the number of cases, T. T test cases follow, each on a separate line. Each test case contains one positive integer n.
Output
For each input case, you should output:
Case #X: Y
where X is the number of the test case and Y is the last three integer digits of the number (3 + √5)n. In case that number has fewer than three integer digits, add leading zeros so that your output contains exactly three digits.
Limits
1 <= T <= 100
Small dataset
2 <= n <= 30
Large dataset
2 <= n <= 2000000000
Sample
|
Input |
Output |
2
|
Case #1: 935 |
题目链接:Problem C. Numbers
挑战编程书上的题目,跟HDU的4565有点像,只是这题a与b固定,要求的是整数部分的最后三位数字,不足补0。
一开始书上的公式看不懂,问了下同学才弄懂,可以参考草稿纸上写的推出$a_n$的公式

按照这个思路可以知道题目中所求的答案就是$2*a_n-1$了
然后构造矩阵去求$a_n$即可

代码:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 2;
int a = 3, b = 5, n, m = 1000; int mul(int a, int b)
{
int r = 0;
while (b)
{
if (b & 1)
r = (r + a) % m;
a = (a << 1) % m;
b >>= 1;
}
return r;
}
struct Mat
{
int A[N][N];
void zero()
{
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
A[i][j] = 0;
}
void one()
{
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
A[i][j] = (i == j);
}
Mat operator*(Mat b)
{
Mat c;
c.zero();
for (int k = 0; k < N; ++k)
{
for (int i = 0; i < N; ++i)
{
if (A[i][k])
{
for (int j = 0; j < N; ++j)
{
if (b.A[k][j])
c.A[i][j] = (c.A[i][j] + mul(A[i][k], b.A[k][j])) % m;
}
}
}
}
return c;
}
friend Mat operator^(Mat a, int b)
{
Mat r;
r.one();
while (b)
{
if (b & 1)
r = r * a;
a = a * a;
b >>= 1;
}
return r;
}
};
int main(void)
{
while (~scanf("%d", &n))
{
Mat A, B;
A.zero();
B.zero();
A.A[0][0] = 1; A.A[0][1] = 0;
A.A[1][0] = 1; A.A[1][1] = 0;
B.A[0][0] = a; B.A[0][1] = 1;
B.A[1][0] = b; B.A[1][1] = a;
A = A * (B ^ n);
printf("Case #%d: %03d\n", q, ((A.A[0][0] << 1) - 1) % m);
}
return 0;
}
Google Code Jam 2008 Round 1A C Numbers(矩阵快速幂+化简方程,好题)的更多相关文章
- Google Code Jam 2010 Round 1A Problem A. Rotate
https://code.google.com/codejam/contest/544101/dashboard#s=p0 Problem In the exciting game of Jo ...
- Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)
Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...
- [C++]Saving the Universe——Google Code Jam Qualification Round 2008
Google Code Jam 2008 资格赛的第一题:Saving the Universe. 问题描述如下: Problem The urban legend goes that if you ...
- [C++]Store Credit——Google Code Jam Qualification Round Africa 2010
Google Code Jam Qualification Round Africa 2010 的第一题,很简单. Problem You receive a credit C at a local ...
- Google Code Jam 2010 Round 1C Problem A. Rope Intranet
Google Code Jam 2010 Round 1C Problem A. Rope Intranet https://code.google.com/codejam/contest/61910 ...
- hdu 3117 Fibonacci Numbers 矩阵快速幂+公式
斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...
- [Google Code Jam (Qualification Round 2014) ] B. Cookie Clicker Alpha
Problem B. Cookie Clicker Alpha Introduction Cookie Clicker is a Javascript game by Orteil, where ...
- [Google Code Jam (Qualification Round 2014) ] A. Magic Trick
Problem A. Magic Trick Small input6 points You have solved this input set. Note: To advance to the ...
- Count Numbers(矩阵快速幂)
Count Numbers 时间限制: 8 Sec 内存限制: 128 MB提交: 43 解决: 19[提交] [状态] [讨论版] [命题人:admin] 题目描述 Now Alice want ...
随机推荐
- 【BZOJ1972】[SDOI2010] 猪国杀(恶心的大模拟)
点此看题面 大致题意: 让你模拟一个游戏猪国杀的过程. 几大坑点 对于这种模拟题,具体思路就不讲了,就说说有哪些坑点. 题面有锅,反猪是\(FP\). 数据有锅,牌堆中的牌可能不够用,牌堆为空之后需一 ...
- Redis学习记录(一)
在学习Redis之前,要知道什么是NoSQL? 1.NoSQL 1.1. 什么是NoSQL NoSQL(NoSQL = Not Only SQL),表示“不仅仅是SQL”,泛指非关系型数据库. 1.2 ...
- ubuntu安装R时候增加软件源到sources.list,sudo apt-get update不能更新
http://forum.ubuntu.org.cn/viewtopic.php?t=401717 ubuntu安装R时候增加软件源到sources.list,sudo apt-get update不 ...
- 操作系统(3)_CPU调度_李善平ppt
不只上面的四种,比如时间片到了也会引起调度. 具体的调度算法: fcfs简单,但是波动很大. 最高相应比算法,执行时间最长就应该等待的长点,比sjf多了一个等待时间的考虑. 硬件定时器和软件计数器共同 ...
- java算法面试题:从类似如下的文本文件中读取出所有的姓名,并打印出重复的姓名和重复的次数,并按重复次数排序 ;读取docx 读取doc 使用poi 相关jar包提集提供下载
从类似如下的文本文件中读取出所有的姓名,并打印出重复的姓名和重复的次数,并按重复次数排序 1,张三,28 2,李四,35 3,张三,28 4,王五,35 5,张三,28 6,李四,35 7,赵六,28 ...
- Mint UI文档
Mint UI文档:http://elemefe.github.io/mint-ui/#/ 一.Mint UI的安装和基本用法. 1.NPM :npm i mint-ui -S 建议使用npm进行安装 ...
- LGTB 学分块
总时间限制: 10000ms 单个测试点时间限制: 1000ms 内存限制: 65536kB 描述 LGTB 最近在学分块,但是他太菜了,分的块数量太多他就混乱了,所以只能分成 3 块 今天他得 ...
- 初学puppet
初学puppet puppet是什么? puppet是一个开源的软件自动化配置和部署工具,很多大型IT公司均在使用puppet对集群中的软件进行管理和部署. Puppet简介 Puppet的目录是让管 ...
- 如何禁止用户连续点击一个按钮事件详细JS
<input type="button" id="submit" value="提交"> <script> $(do ...
- JZOJ 2137. 【GDKOI2004】城市统计 (Standard IO)
2137. [GDKOI2004]城市统计 (Standard IO) Time Limits: 1000 ms Memory Limits: 128000 KB Detailed Limits ...