Matrix Power Series
Time Limit: 3000MS   Memory Limit: 131072K
Total Submissions: 15739   Accepted: 6724

Description

Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

Input

The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative
integers below 32,768, giving A’s elements in row-major order.

Output

Output the elements of S modulo m in the same way as A is given.

Sample Input

2 2 4
0 1
1 1

Sample Output

1 2
2 3

当k为奇数时

Sk = A + A2 + A3 + … + Ak  

    =(1+Ak/2)*(A + A2 + A3 + … + Ak/2  )+{Ak}

    =(1+Ak/2)*(Sk/2 )+{Ak}

当k为偶数时

Sk = A + A2 + A3 + … + Ak  

    =(1+Ak/2)*(A + A2 + A3 + … + Ak/2  )+{Ak}

    =(1+Ak/2)*(Sk/2 )

就能够二分递归求Sk

代码:

//829ms
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int n,m;
struct matrix
{
int ma[50][50];
} a;
matrix multi(matrix x,matrix y)//矩阵相乘
{
matrix ans;
memset(ans.ma,0,sizeof(ans.ma));
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
if(x.ma[i][j])//稀疏矩阵优化
for(int k=1; k<=n; k++)
{
ans.ma[i][k]=(ans.ma[i][k]+x.ma[i][j]*y.ma[j][k])%m;
}
}
}
return ans;
}
matrix add(matrix x,matrix y)//矩阵相加
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
x.ma[i][j]=(x.ma[i][j]+y.ma[i][j])%m;
return x;
}
matrix pow(matrix a,int m)
{
matrix ans;
for(int i=1; i<=n; i++) //单位矩阵
{
for(int j=1; j<=n; j++)
{
if(i==j)
ans.ma[i][j]=1;
else
ans.ma[i][j]=0;
}
}
while(m)//矩阵高速幂
{
if(m&1)
{
ans=multi(ans,a);
}
a=multi(a,a);
m=(m>>1);
}
return ans;
}
matrix solve(matrix x,int k)//递归求Sk
{
if(k==1)
return x;
matrix ans;
for(int i=1; i<=n; i++) //单位矩阵
{
for(int j=1; j<=n; j++)
{
if(i==j)
ans.ma[i][j]=1;
else
ans.ma[i][j]=0;
}
}
ans=add(ans,pow(x,k/2));
ans=multi(ans,solve(x,k/2));
if(k&1)
ans=add(ans,pow(x,k));
return ans;
}
int main()
{
int k;
while(~scanf("%d%d%d",&n,&k,&m))
{
matrix ans,a;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
scanf("%d",&a.ma[i][j]);
}
ans=solve(a,k);
for(int i=1; i<=n; i++)
{
for(int j=1; j<n; j++)
printf("%d ",ans.ma[i][j]);
printf("%d\n",ans.ma[i][n]);
}
}
return 0;
}

poj 3233 Matrix Power Series(矩阵二分,高速幂)的更多相关文章

  1. Poj 3233 Matrix Power Series(矩阵乘法)

    Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Description Given a n × n matrix A and ...

  2. POJ 3233 Matrix Power Series(矩阵高速功率+二分法)

    职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9.     这 ...

  3. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  4. poj 3233 Matrix Power Series 矩阵求和

    http://poj.org/problem?id=3233 题解 矩阵快速幂+二分等比数列求和 AC代码 #include <stdio.h> #include <math.h&g ...

  5. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

  6. POJ 3233 Matrix Power Series(矩阵等比求和)

    题目链接 模板题. #include <cstdio> #include <cstring> #include <iostream> #include <ma ...

  7. 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series

    poj 1575  Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...

  8. POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

    任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K To ...

  9. [ACM] POJ 3233 Matrix Power Series (求矩阵A+A^2+A^3...+A^k,二分求和或者矩阵转化)

    Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 15417   Accepted:  ...

随机推荐

  1. 刷题总结——开车旅行(NOIP2012 set+倍增)

    题目: 题目描述 小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为Hi,城 ...

  2. 数据库操作之—— explain 的type解释

    (1)SYSTEM (2)CONST (3)EQ_REF (4)REF (5)REF_OR_NULL (6)RANGE (7)INDEX_SCAN (8)ALL (9)UNIQUE_SUBQUERY ...

  3. 【CF700B】Connecting Universities(贪心,树上最短路)

    题意:给出一棵树上的2*k个节点,给他们配对,使得他们之间的距离和最大. 思路:一条边的两侧如果有一侧没有给定的节点就不会被经过…… 如果有1个节点就会被经过1次…… 如果两侧分别有x,y个给定节点就 ...

  4. 记录vim经常使用的几个命令

    vi/vim 基本使用方法 vi编辑器是所有Unix及Linux系统下标准的编辑器. $ vim 1.txt 以vi打开一个文件就直接进入一般模式了(这是默认的模式).在这个模式中, 你可以使用上下左 ...

  5. Linux 之 服务以及进程

    服务以及进程 参考教程:[千峰教育] 命令: vmstat: 结果: procs -----------memory---------- ---swap-- -----io---- --system- ...

  6. Vijos 1323: 化工厂装箱员

    题形:DP 题意:A,B,C三种物品,一共N个,顺序摆放,按顺序拿.每次手上最多能拿10个物品,然后可以将某个类别的物品分类放好,再从剩下的拿,补全10个.问最少放几次,可以把所有物品分类好. 思路: ...

  7. hdu 1181(Floyed)

    变形课 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submis ...

  8. XA事务与MySQL

    XA事务就是两阶段提交的一种实现方式 XA规范主要定义了事务管理器TM,和资源管理器RM之间的接口 根据2PC的规范,将一次事务分割成两个阶段 1. prepare阶段 TM向所有RM发送prepar ...

  9. 2017 [六省联考] T1 期末考试

    4868: [Shoi2017]期末考试 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 842  Solved: 385[Submit][Status ...

  10. PropertyPlaceholderConfigurer 基本用法

    目录 一.PropertyPlaceholderConfigurer 的继承体系 二.PropertyPlaceholderConfigurer 的基本概念 三.PropertyPlaceholder ...