P1014 Cantor表

题目描述

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 …

3/1 3/2 3/3 …

4/1 4/2 …

5/1 …

… 我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

输入输出格式

输入格式:

整数N(1≤N≤10000000)

输出格式:

表中的第N项

输入输出样例

输入样例#1:

7
输出样例#1:

1/4
/*找规律啊*/
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int sum[],n;
int main(){
for(int i=;i<=;i++)sum[i]=sum[i-]+i;
scanf("%d",&n);
int pos=lower_bound(sum+,sum+,n)-sum;
int s=sum[pos-]+;int plus=pos+;//分子和分母之和为plus
int mu=n-s+;
int z=plus-mu;
if(pos%==)swap(z,mu);
printf("%d/%d",z,mu);
}

洛谷P1014 Cantor表的更多相关文章

  1. 洛谷——P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  2. 洛谷 P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  3. [NOIP1999] 提高组 洛谷P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  4. 洛谷 P1014 Cantor表 Label:续命模拟QAQ

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  5. (模拟) codeVs1083 && 洛谷P1014 Cantor表

    题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/ ...

  6. 洛谷 P1014 Cantor表【蛇皮矩阵/找规律/模拟】

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  7. java实现 洛谷 P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/2 2/3 2/4 - ...

  8. (水题)洛谷 - P1014 - Cantor表

    https://www.luogu.org/problemnew/show/P1014 很显然同一对角线的和是相等的.我们求出前缀和然后二分. 最后注意奇偶的顺序是相反的. #include<b ...

  9. 洛谷P1482 Cantor表(升级版) 题解

    题目传送门 此题zha一看非常简单. 再一看特别简单. 最后瞟一眼,还是很简单. 所以在此就唠一下GCD大法吧: int gcd(int x,int y){ if(x<y) return gcd ...

随机推荐

  1. PYTHON加密解密字符串

    依赖包安装部分 安装依赖包: pip install pycryptodome 在你的python环境中的下图红框路径中找到 crypto 将其改成 Crypto 代码部分 #!/usr/bin/en ...

  2. Java for LeetCode 097 Interleaving String 【HARD】

    Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example, Given: s1 ...

  3. linux下 python源码包解压报错

    执行下面的命令 tar -zvxf Python.3.6.5.tgz 报错 gzip: stdin: not in gzip format tar: Child returned status 1 t ...

  4. 剑指Offer:字符串排列【38】

    剑指Offer:字符串排列[38] 题目描述 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bc ...

  5. BZOJ 4582 [Usaco2016 Open]Diamond Collector:贪心【相差不超过k】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4582 题意: 给你n个数. 让你将其中的一些数放入两个不同的集合中,并保证同一集合内两两元 ...

  6. 高效上网教程---资源软件搜索技巧(搜索好用软件或者app去哪些网站)

    高效上网教程---资源软件搜索技巧(搜索好用软件或者app去哪些网站) 一.总结 一句话总结:查看下面这些网站用户推荐的 知乎:比如 小众软件 site:zhihu.com 简书:查看你需要的用户推荐 ...

  7. 分享知识-快乐自己:SpringMvc中的四种数据源及相关配置(整合快速集成开发)

     数据库连接: jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://39.105.105.186:3306/SpringMybatis?us ...

  8. C/C++协程的实现方式总结

    1.利用 C 语言的 setjmp 和 longjmp,函数中使用 static local 的变量来保存协程内部的数据. 函数原型:int setjmp(jmp_buf envbuf); void  ...

  9. BZOJ_5359_[Lydsy1805月赛]寻宝游戏_DP

    BZOJ5359_[Lydsy1805月赛]寻宝游戏_DP Description begin.lydsy.com/JudgeOnline/upload/201805.pdf 我们需要找到一条权值最大 ...

  10. [转载]IOCP模型的总结

    原文:IOCP模型的总结 IOCP(I/O Completion Port,I/O完成端口)是性能最好的一种I/O模型.它是应用程序使用线程池处理异步I/O请求的一种机制.在处理多个并发的异步I/O请 ...