题目描述

在幻想乡,琪露诺是以笨蛋闻名的冰之妖精。

某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来。但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸。于是琪露诺决定到河岸去追青蛙。

小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子。而且琪露诺按照一种特殊的方式进行移动,当她在格子i时,她只移动到区间[i+l,i+r]中的任意一格。你问为什么她这么移动,这还不简单,因为她是笨蛋啊。

每一个格子都有一个冰冻指数A[i],编号为0的格子冰冻指数为0。当琪露诺停留在那一格时就可以得到那一格的冰冻指数A[i]。琪露诺希望能够在到达对岸时,获取最大的冰冻指数,这样她才能狠狠地教训那只青蛙。

但是由于她实在是太笨了,所以她决定拜托你帮它决定怎样前进。

开始时,琪露诺在编号0的格子上,只要她下一步的位置编号大于N就算到达对岸。

输入输出格式

输入格式:

第1行:3个正整数N, L, R

第2行:N+1个整数,第i个数表示编号为i-1的格子的冰冻指数A[i-1]

输出格式:

一个整数,表示最大冰冻指数。保证不超过2^31-1

输入输出样例

输入样例#1: 复制

5 2 3
0 12 3 11 7 -2
输出样例#1: 复制

11

说明

对于60%的数据:N <= 10,000

对于100%的数据:N <= 200,000

对于所有数据 -1,000 <= A[i] <= 1,000且1 <= L <= R <= N

题解

考虑暴力:设$f[i]$为踩第$i$个格子时的最大收益。

则转移:$f[i]=(max_{j=i-l}^{r} f[j])+a[i]$

考虑优化:$j$的取值区间随着$i$的增大而单调右移。

转化为滑动窗口问题,维护从大到小单调队列,每次取队首就好了。

 /*
qwerta
P1725 琪露诺 Accepted
100
代码 C++,0.73KB
提交时间 2018-10-26 10:52:13
耗时/内存 62ms, 3468KB
*/
#include<iostream>
#include<cstdio>
using namespace std;
int a[];
int f[];
int q[];
int pos[];
inline int read()
{
char ch=getchar();
int x=;bool s=;
while(!isdigit(ch)){if(ch=='-')s=;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return s?x:-x;
}
int main()
{
//freopen("a.in","r",stdin);
int n=read(),l=read(),r=read();
for(int i=;i<=n;++i)
a[i]=read();
int he=,ta=;
int ans=;
for(int i=;i<l;++i)
f[i]=-;
for(int i=l;i<=n;++i)
{
if(pos[he]<i-r)he++;
while(q[ta]<=f[i-l]&&ta>=he)ta--;
q[++ta]=f[i-l];
pos[ta]=i-l;
//
f[i]=a[i]+q[he];
if(i+r>n)
ans=max(ans,f[i]);
//cout<<i<<" "<<he<<" "<<ta<<" "<<pos[he]<<" "<<q[he]<<" "<<f[i]<<endl;
}
cout<<ans;
return ;
}

「LuoguP1725」琪露诺(dp 单调队列的更多相关文章

  1. 洛谷P1725 琪露诺 (单调队列/堆优化DP)

    显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...

  2. cogs 920. [東方S1] 琪露诺

    二次联通门 : cogs 920. [東方S1] 琪露诺 /* cogs 920. [東方S1] 琪露诺 dp 方程为dp[i] = max (dp[i - L], dp[i - L + 1] ... ...

  3. luogu P1725 琪露诺

    二次联通门 : luogu P1725 琪露诺 /* luogu P1725 琪露诺 DP + 线段树 用线段树维护dp[i - R] ~ dp[i - L]的最大值 然后 转移方程是 dp[i] = ...

  4. Luogu【P1725】琪露诺(单调队列,DP)

    本文是笔者第二篇解题报告.从现在开始,会将练的一些题发到博客上并归类到"解题报告"标签中. 琪露诺是这样一道题 这道题可以用纯DP做,但是据说会超时.(为什么?看起来过河这题比它数 ...

  5. 洛谷P1725琪露诺(单调队列优化dp)

    P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪 ...

  6. 【洛谷】【动态规划+单调队列】P1725 琪露诺

    [题目描述:] 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到河 ...

  7. P1725 琪露诺(单调队列优化)

    描述:https://www.luogu.com.cn/problem/P1725 小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子.而且琪露诺按照一种特殊的方式进行移 ...

  8. P1725 琪露诺 题解(单调队列)

    题目链接 琪露诺 解题思路 单调队列优化的\(dp\). 状态转移方程:\(f[i]=max{f[i-l],f[i-l+1],...,f[i-r-1],f[i-r]}+a[i]\) 考虑单调队列优化. ...

  9. 洛谷P1725 琪露诺

    传送门啦 本人第一个单调队列优化 $ dp $,不鼓励鼓励? 琪露诺这个题,$ dp $ 还是挺好想的对不,但是暴力 $ dp $ 的话会 $ TLE $ ,所以我们考虑用单调队列优化. 原题中说她只 ...

随机推荐

  1. 36:字符串排序SortString

    题目描述:编写一个程序,将输入字符串中的字符按如下规则排序. 规则1:英文字母从A到Z排列,不区分大小写. 如,输入:Type 输出:epTy 规则2:同一个英文字母的大小写同时存在时,按照输入顺序排 ...

  2. spring源码解析之IOC容器(一)

    学习优秀框架的源码,是提升个人技术水平必不可少的一个环节.如果只是停留在知道怎么用,但是不懂其中的来龙去脉,在技术的道路上注定走不长远.最近,学习了一段时间的spring源码,现在整理出来,以便日后温 ...

  3. Angualr 实现复选框全选功能

    html <html lang="en"> <head> <meta charset="UTF-8"> <title& ...

  4. Nginx 经验小结

    chmod 777 永远不要 使用 777,有时候可以懒惰的解决权限问题, 但是它同样也表示你没有线索去解决权限问题,你只是在碰运气. 你应该检查整个路径的权限,并思考发生了什么事情. 把 root ...

  5. java中的 equals + hashCode

    [0]README 0.1)本文转自 core java volume 1, 旨在理清 equals + hashCode方法: [1]equals方法 1.1) Object中的 equals 方法 ...

  6. ASP.NET动态网站制作(4)--css(3)

    前言:这节课主要运用前面所学的知识写三个例子,并且学习浏览器兼容性的解决方法. 内容: 例子1:一个关于列表的例子 html代码: <!DOCTYPE html PUBLIC "-// ...

  7. 用Delphi实现网络视频编程

    在MSN.QQ等聊天类的应用程序中,都应用到了网络视频技术.Delphi使用Object Pascal语言是一种完全面向对象语言,可以开发出灵活强大的程序,开发网络视频程序也不在话下.一个完整的网络视 ...

  8. EasyDSS高性能流媒体服务器前端重构(六)- webpack-dev-server 支持手机端访问

    很多时候,前端开发的页面,不仅要在PC端测试效果, 还要在手机端测试效果. 在开发阶段, 我们以 webpack-dev-server 来启动浏览器, 打开正在开发的页面. webpack-dev-s ...

  9. linux c编程:gdb的使用

    首先用一个简单的打印字符的程序来做下示例 #include<stdio.h>#include<string.h>void main(){    int i=0;    char ...

  10. cocos2d-x中对象的位置,旋转,缩放

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/cuit/article/details/26729633 分为两种: 缓动.IntervalActi ...