Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)
题目链接 Power Tower
题意 给定一个序列,每次给定$l, r$
求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$ 对m取模的值
根据这个公式

每次递归计算。
因为欧拉函数不断迭代,下降到$1$的级别大概是$log(m)$的,那么对于每一次询问最多需要递归$log(m)$次
注意每次求解欧拉函数的时候要用map存下来,方便以后查询
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 1e5 + 10; int n, q;
LL a[N];
LL m;
map <LL, LL> f; LL phi(LL n){
if (f.count(n)) return f[n];
LL ans = n, z = n;
for (LL i = 2; i * i <= n; ++i){
if (n % i == 0){
ans -= ans / i;
while (n % i == 0) n /= i;
}
} if (n > 1) ans -= ans / n;
return f[z] = ans;
} LL Pow(LL a, LL b, LL mod){
LL ret = 1;
LL fl = a >= mod;
for (; b; b >>= 1){
if (b & 1){
ret *= a;
if (ret >= mod) fl = 1, ret %= mod;
} a *= a;
if (a >= mod) a %= mod, fl = 1;
} return ret + fl * mod;
} LL solve(int l, int r, LL mod){
if (l == r) return a[l];
if (mod == 1) return 1;
return Pow(a[l], solve(l + 1, r, phi(mod)), mod);
} int main(){ scanf("%d%lld", &n, &m);
rep(i, 1, n) scanf("%lld", a + i); scanf("%d", &q);
while (q--){
int x, y;
scanf("%d%d", &x, &y);
printf("%lld\n", solve(x, y, m) % m);
} return 0;
}
Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)的更多相关文章
- Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)
题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...
- Codeforces 871D Paths (欧拉函数 + 结论)
题目链接 Round #440 Div 1 Problem D 题意 把每个数看成一个点,如果$gcd(x, y) \neq 1$,则在$x$和$y$之间连一条长度为$1$的无向边. ...
- CodeForces - 906D Power Tower(欧拉降幂定理)
Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...
- D - Power Tower欧拉降幂公式
题意:给你一个数组a,q次查询,每次l,r,要求 \(a_{l}^{a_{l+1}}^{a_{l+2}}...{a_r}\) 题解:由欧拉降幂可知,最多log次eu(m)肯定变1,那么直接暴力即可,还 ...
- [Codeforces]906D Power Tower
虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...
- Please, another Queries on Array? CodeForces - 1114F (线段树,欧拉函数)
这题刚开始看成求区间$\phi$和了........先说一下区间和的做法吧...... 就是说将题目的操作2改为求$(\sum\limits_{i=l}^{r}\phi(a[i]))\%P$ 首先要知 ...
- [CodeForces - 906D] Power Tower——扩展欧拉定理
题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...
- Codeforces 1114F Please, another Queries on Array? [线段树,欧拉函数]
Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)= ...
- Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...
随机推荐
- The DOM in JavaScript
DOM : Document Object Model D is for document : The DOM cant work without a document . When you c ...
- golang echo livereload
echo on port 1323 gin -a 1323 run server.go go get github.com/codegangsta/gin gin -h
- vijos1083:小白逛公园
小白逛公园 描述 小新经常陪小白去公园玩,也就是所谓的遛狗啦…在小新家附近有一条“公园路”,路的一边从南到北依次排着n个公园,小白早就看花了眼,自己也不清楚该去哪些公园玩了. 一开始,小白就根据公园的 ...
- laravel5.2总结--数据填充
1 生成一个seeder文件 你可以通过 make:seeder artisan命令来生成一个 Seeder.所有通过框架生成的 Seeder 都将被放置在 database/seeds 路径: ...
- python2.7运行报警告:UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal解决办法
1. 程序源代码报错部分: #选择年级if grade == '幼升小': outline.nianji().pop(0).click()elif grade == "一年级": ...
- Python-S9-Day115——Flask Web框架基础
01 今日内容概要 02 内容回顾 03 Flask框架:配置文件导入原理 04 Flask框架:配置文件使用 05 Flask框架:路由系统 06 Flask框架:请求和响应相关 07 示例:学生管 ...
- icpc南昌邀请赛 比赛总结
上周末,我参加了icpc南昌区域赛邀请赛,这也是我的第一次外出参赛. 星期五晚上,在6个小时的火车和1个小时的公交后,我们终于抵达了江西师范大学,这次的比赛场地.江西师范大学周围的设施很齐全,各种烧烤 ...
- 使用hibernate建立mysql连接以及生成映射类和配置文件*.cfg.xml
建立数据库连接 找到window—open perspective—myeclipse database explore空白出右键new注意 driver template 和driver class ...
- Redis实现缓存,你应该懂的哪些思路!
场景一:类似于微博,实现关注和被关注功能. 思路: 对每个用户使用两个集合类型键,用来存储关注别人的用户和被该用户关注的用户.当用户A关注用户B的时候,执行两步操作: sadd user:A B sa ...
- iOS-@inerface的11条规范写法
总结一些interface声明时的规范,相关宏的介绍,定义方法时有用的修饰符,编写注释的规范,最终写出一个合格的头文件. 1.读写权限 1.1实例变量的@public,@protected,@priv ...