本文是笔者第二篇解题报告。从现在开始,会将练的一些题发到博客上并归类到"解题报告"标签中。

琪露诺是这样一道题

这道题可以用纯DP做,但是据说会超时。(为什么?看起来过河这题比它数据大多了)于是到Luogu题解上找到了单调队列优化。

首先讲一下纯DP思路

假设我们的⑨正在河中央,编号为i的格子上。

观察琪露诺的移动规律可得,琪露诺再往下走只能走到编号为i + l 到 i + r 之间的格子上。

于是想到,琪露诺之所以现在能在这里,一定是上一步从编号为 i - r 到 i - l 的格子上其中一个,然后走过来。

所以用 i 横扫输入数组,用 j 爆搜 i - r 到 i - l 之间的所有格子,然后取一个冰冻指数最大的。

but这样会TLE

用单调队列。维护一个单调递减的队列,弹出队尾不符合性质的元素,弹出队首需要出队的元素,然后让当前元素进队,最后寻找答案。

代码在这里

#include<cstdio>
#include<cctype> const int size=; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=(num<<)+(num<<)+ch-'';
ch=getchar();
}
return num*f;
} int que[size],f[size],q[size];
int h=,t;
int ans; int main(){
int n=read(),l=read(),r=read();
for(int i=;i<=n;++i) que[i]=read();
for(int i=l;i<=n;++i){
while(q[f[t]]<=q[i-l]&&t>=h) t--;
f[++t]=i-l;
while(f[h]<i-r) h++;
q[i]=q[f[h]]+que[i];
}
ans=q[n-r+];
for(int i=n-r+;i<=n;++i) ans=ans>q[i]?ans:q[i];
printf("%d",ans);
return ;
}

Luogu【P1725】琪露诺(单调队列,DP)的更多相关文章

  1. 洛谷P1725琪露诺(单调队列优化dp)

    P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪 ...

  2. P1725 琪露诺(单调队列优化)

    描述:https://www.luogu.com.cn/problem/P1725 小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子.而且琪露诺按照一种特殊的方式进行移 ...

  3. luogu P1725 琪露诺

    二次联通门 : luogu P1725 琪露诺 /* luogu P1725 琪露诺 DP + 线段树 用线段树维护dp[i - R] ~ dp[i - L]的最大值 然后 转移方程是 dp[i] = ...

  4. luoguP1725 琪露诺 单调队列

    DP 方程:$f[i]=max(f[j])+v[i]$ 转移范围:$i-r<=j<=i-l$ 由此我们得知,每次只有 $[i-r,i-l]$ 部分的 $f$ 值对新更新的答案会有贡献. 故 ...

  5. P1725 琪露诺

    P1725 琪露诺 单调队列优化dp 对于不是常数转移的dp转移,我们都可以考虑单调队列转移 然而我们要把数组开大 #include<cstdio> #include<algorit ...

  6. 【洛谷】【动态规划+单调队列】P1725 琪露诺

    [题目描述:] 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到河 ...

  7. 洛谷 P1725 琪露诺 题解

    P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是 ...

  8. P1725 琪露诺 题解(单调队列)

    题目链接 琪露诺 解题思路 单调队列优化的\(dp\). 状态转移方程:\(f[i]=max{f[i-l],f[i-l+1],...,f[i-r-1],f[i-r]}+a[i]\) 考虑单调队列优化. ...

  9. 洛谷P1725 琪露诺

    传送门啦 本人第一个单调队列优化 $ dp $,不鼓励鼓励? 琪露诺这个题,$ dp $ 还是挺好想的对不,但是暴力 $ dp $ 的话会 $ TLE $ ,所以我们考虑用单调队列优化. 原题中说她只 ...

随机推荐

  1. UVA 11552 Fewest Flops(区间dp)

    一个区间一个区间的考虑,当前区间的决策只和上一次的末尾有关,考虑转移的时候先统计当前区间出现过的字母以及种数ct 枚举上一个区间的末尾标号j,规定小于INF为合法状态,确定j之后看j有没有在当前的区间 ...

  2. python_89_configparser模块

    用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser.在python2.x版本中为ConfigPsresr 来看一个好多软件的常见文档格式如下 [ ...

  3. Bootstrap历练实例:默认的Well

    Well 是一种会引起内容凹陷显示或插图效果的容器 <div>.为了创建 Well,只需要简单地把内容放在带有 class .well 的 <div> 中即可.下面的实例演示了 ...

  4. NOIP2016——一个逗号引发的血案

    今年江西省报名人数一下子增起来了 隔壁中学来了80+人(虽然都是来给我们垫底的...临时被老师抓来上战场 总之我们赛区参赛人数总算多起来了(起码没再减50%...连续4年减50%真不是随便说说的... ...

  5. 设置通过Maven创建的工程的JDK的版本,更改conf/settings.xml

    eclipse提示警告如下: Build path specifies execution environment J2SE-1.5. There are no JREs installed in t ...

  6. 【计数】hdu5921Binary Indexed Tree

    二进制拆位计算贡献 题目描述 树状数组是一种常用的数据结构,下面是树状数组用于给区间 [1,x] 内的数加 t 的代码: void add(int x,int t){ for (int i=x;i;i ...

  7. 如何使用jmeter做关联

    1.适用场景 从上一个接口的返回值中获取值传递给下一个接口使用 2.添加JSON Extractor 在需求提取的参数上添加--后置处理器--JSON Extractor 从登录接口的返回值中取use ...

  8. python入门:while 循环的基本用法

    #!/usr/bin/env python # -*- coding:utf-8 -*- #while 循环的作用 import time while True: ") time.sleep ...

  9. 解决iPhone滑动不流畅问题

    前段时间在做一个手机端的页面时遇到了iOS上滑动不流畅的问题,后来才发现安卓上没有问题,才意识到这是兼容性问题引起的,所以遇到问题后快速定位到问题根源非常重要.在网上一搜就找到了解决方案.以后遇到类似 ...

  10. ASP( VBScript ) 解析 JSON

    <script language="jscript" runat="server"> Array.prototype.get = function( ...