[NOIP2009] 最优贸易 (最短路,分层图)
题目链接
Solution
分层图+\(SPFA\)。
建立3层图,其中每一层之中的边权赋为0.
对于任意一条边 \(t\) ,其起点 \(x\) 和终点 \(y\).
我们将 \(x\) 在第一层的节点连向 \(y\) 的第二层节点,边权为 \(w[x]\).
代表在 \(x\) 买了这个东西.
然后将 \(x\) 在第二层的节点连向 \(y\) 的第三层节点,边权为 \(-w[x]\).
代表在 \(x\) 卖了这个东西.
此外,囿于可以直接不买不卖,所以直接从节点 \(1\) 连一条边权为 \(0\) 的边向超级终点 \(T\).
然后跑 \(SPFA\) . 注意,一般\(dijkstra\)不能跑带负权的图!!!
Code
#include<bits/stdc++.h>
using namespace std;
const int maxn=200008;
struct sj{
int to,next,w;
}a[maxn*4];
int head[maxn],size;
int read()
{
char ch=getchar(); int f=1,w=0;
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){w=w*10+ch-'0';ch=getchar();}
return f*w;
}
void add(int x,int y,int w)
{
a[++size].to=y;
a[size].next=head[x];
head[x]=size;
a[size].w=w;
}
int n,m,w[maxn];
int dis[maxn],v[maxn];
void spfa()
{
queue<int>q;
memset(dis,127,sizeof(dis));
q.push(1);
v[1]=1; dis[1]=0;
while(q.empty()!=1)
{
int x=q.front(); q.pop(); v[x]=0;
for(int i=head[x];i;i=a[i].next)
{
int tt=a[i].to;
if(dis[tt]>dis[x]+a[i].w)
{
dis[tt]=dis[x]+a[i].w;
if(!v[tt])
q.push(tt),v[tt]=1;
}
}
}
}
void pre(int x,int y)
{
add(x,y,0);
add(x,y+n,w[x]);
add(x+n,y+n,0);
add(x+n,y+2*n,-w[x]);
add(x+2*n,y+2*n,0);
}
int main()
{
n=read(); m=read();
for(int i=1;i<=n;i++)
w[i]=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),opt=read();
pre(x,y);
if(opt==2)pre(y,x);
}
add(1,3*n+1,0);
add(3*n+1,3*n+2,0);
add(3*n,3*n+2,0);
spfa();
cout<<-1*dis[3*n+2]<<endl;
}
[NOIP2009] 最优贸易 (最短路,分层图)的更多相关文章
- 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)
次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...
- [Luogu 1073] NOIP2009 最优贸易
[Luogu 1073] NOIP2009 最优贸易 分层图,跑最长路. 真不是我恋旧,是我写的 Dijkstra 求不出正确的最长路,我才铤而走险写 SPFA 的- #include <alg ...
- [NOIP2009]最优贸易(图论)
[NOIP2009]最优贸易 题目描述 CC 国有 \(n\) 个大城市和 \(m\) 条道路,每条道路连接这 \(n\) 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 \(m\ ...
- [luogu1073 Noip2009] 最优贸易 (dp || SPFA+分层图)
传送门 Description C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这m 条道路中有一部分为单向通行的道路,一部分 为 ...
- Luogu P1073 最优贸易(最短路)
P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...
- 【洛谷P1073】[NOIP2009]最优贸易
最优贸易 题目链接 看题解后感觉分层图好像非常NB巧妙 建三层n个点的图,每层图对应的边相连,权值为0 即从一个城市到另一个城市,不进行交易的收益为0 第一层的点连向第二层对应的点的边权为-w[i], ...
- 洛谷 P4011 孤岛营救问题【最短路+分层图】
题外话:昨夜脑子昏沉,今早一调试就过了...错误有:我忘记还有墙直接穿墙过...memset初始化INF用错了数...然后手残敲错一个状态一直过不了样例...要是这状态去比赛我简直完了......or ...
- BZOJ:2763-[JLOI2011]飞行路线(最短路分层图)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 解题心得: 第一次见到分层最短路.其实题中说选择k条路径免费,那怎么选k条路径并没 ...
- NOIP2009 最优贸易
3. 最优贸易 (trade.pas/c/cpp) [问题描述] C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间 多只有一条道路直接相连.这 m 条道 ...
随机推荐
- [学习笔记] AD笔记
Auto diff 深度学习基础知识,auto diff自动微分的笔记,tensorflow中的求导就是基于这个做的.多用于复杂神经网络求导.来自于一篇论文,没怎么看完,但是会算了,比较底层一点吧.. ...
- Spring归纳
Spring总结 bean标签的scope属性 scope="singleton",单例模式,默认值 scope="prototype",多例模式 注解元素 @ ...
- WINDOWS-基础:Thread.Sleep(0)
我们可能经常会用到 Thread.Sleep 函数来使线程挂起一段时间.那么你有没有正确的理解这个函数的用法呢?思考下面这两个问题: 假设现在是 2008-4-7 12:00:00.000,如果我调用 ...
- sqlite 新建实体时出错
解决方式 手动下载 问题原因
- VMware9虚拟机安装MAC OS X Mountain Lion 10.8.2详细图文教程
VMware虚拟机安装Mac OS X Mountain Lion 10.8.2所需文件:1.Vmware 9.01版下载:点击进入2.Vmware 9.01版汉化文件:点击进入3.VMware Wo ...
- word中在空白处加下划线不显示解决
终极解决:Ctrl + Shift + Space Alt + 选择,竖向选择.和VS,其他一些编辑器一样
- Linux 、AIX环境下查看oracle配置信息(service_name、SID、tnsname)。
SID: echo $ORACLE_SID service_name: sqlplus / as sysdba; show parameter instance_name; show paramete ...
- 关于cocos2dx for lua资源加载优化方案
之前我写游戏加载都是从一个json文件写入要加载的文件名来实现加载,但是如果资源 比较多的情况下,会导致非常难管理,需要逐个写入.所以换了另外一种方式来加载文件. 首先,我是通过场景之前的切换时候,加 ...
- crond定时操作 crontab
* * * * * 分别表示 分钟 小时 日 月 星期(0-6) 30 17,28,19 * * * 或 30 17-19 * * * 在每天的17-19小时半点时刻执行 30 8-18 ...
- 2.什么是composer与packgist,composer的安装
目录 学习地址: composer与packgist关系图片 composer的安装; 配置composer 修改国内镜像 用composer安装与卸载插件 composer插件升级后报错 学习地址: ...