算法_NP_证明
8.3
STINGY SAT is the following problem: given a set of clauses (each a disjunction of literals) and an
integer k, find a satisfying assignment in which at most k variables are true, if such an assignment
exists. Prove that STINGY SAT is NP-complete.
证明:
由于可以在多项式时间内验证STINGY SAT的解,所以该问题属于NP问题。而将k设为所有变量的总数
时,就可以将SAT规约到STINGY SAT,因此该问题为NP完全问题。
8.8
In the EXACT 4SAT problem, the input is a set of clauses, each of which is a disjunction of exactly
four literals, and such that each variable occurs at most once in each clause. The goal is to find a
satisfying assignment, if one exists. Prove that EXACT 4SAT is NP-complete.
证明:
由于可以在多项式时间内验证EXACT 4SAT的解,因此该问题属于NP问题。为证明其NP完全性,考虑
通过将3SAT规约到EXACT 4SAT。对于任意一个3SAT实例,如果其中某个子句中包含同一个literal多次,
那么可以把这个多次出现的literal缩减为一次;如果同时包含某个literal的肯定和否定,则可以去掉它。另
外,可以在每个子句中添加一些哑变量(辅助变量,没有实际用处),这样就可以将每个子句中包含的
literal的数目增加到四个。因此,该3SAT实例可以转化为一个EXACT 4SAT问题。因此,可以证明该问
题是NP完全的。
算法_NP_证明的更多相关文章
- 浅析拯救小矮人的 nlogn 算法及其证明
浅析拯救小矮人的 nlogn 算法及其证明 题型简介: 有 $ n $ 个人,第 $ i $ 个人身高 $ a_i $ 手长 $ b_i $ ,他们为了从一个高为 $ H $ 的洞中出去,决定搭人梯. ...
- X5平方速算法的证明
X5代表15,25,35,45,55......以上变化的部分为X,如25这个数,X就等于2. X5平方数的速算法是这样:让X乘以X+1,后面写上25就是X5乘以X5的结果.比如25x25,先让2x3 ...
- 人工神经网络反向传播算法(BP算法)证明推导
为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/a ...
- 最小生成树的Prim算法以及Kruskal算法的证明
Prime算法的思路:从任何一个顶点开始,将这个顶点作为最小生成树的子树,通过逐步为该子树添加边直到所有的顶点都在树中为止.其中添加边的策略是每次选择外界到该子树的最短的边添加到树中(前提是无回路). ...
- $\mathcal{OI}$生涯中的各种数论算法的证明
嗯,写这个是因为我太弱了\(ORZ\). #\(\mathcal{\color{silver}{1 \ \ Linear \ \ Sieve \ \ Method \ \ of \ \ Prime}} ...
- 判断一个正整数是否是2的N次方的简洁算法及其证明
在写代码时遇到了“判断一个正整数是否是2的N次方”的问题,不想调用 java.lang 的 Math 类库进行浮点运算,觉得转换为浮点不是个好办法. 遂在网上搜索了一下,发现有人列出来好几种写法,列举 ...
- 单源最短路:Bellman-Ford算法 及 证明
描述: 求图中某一点到其他任一点的最短距离. 操作: 1. 初始化 结果保存在一个dist数组里,源点的结果初始化为0,其他初始化为无穷大(如INT32_MAX). 2. 计算: 两重for循环,第一 ...
- 互联网IP合全局路由优化的原则-Dijkstra算法证明
周末继续写东西的一半填补了,为了达到完美的一天.我们知道一个事实,IP地址太多.统一管理是不可能的了,无论从控制平面从数据/管理层表示,飞机是如此. 所以.IP协议被设计为可伸缩.供IP路由术语,跳路 ...
- Dijkstra算法原理及证明(转)
Dijkstra算法及其证明 算法: 设G是带权图,图中的顶点多于一个,且所有的权都为正数.本算法确定从顶点S到G中其他各个顶点的距离和最短通路.在本算法中P表示带永久标记的顶点的集合.顶点A的前驱是 ...
随机推荐
- mac-httpd
mac 的httpd mac 自带了apache2, 但是不推荐使用, 因为它的目录在/Library/WebServer/Documents/下 使用brew install apache-http ...
- Vue provide/inject 部分源码分析 实现响应式数据更新
provide/inject 数据响应式更新的坑及源码解析 下面是我自己曾经遇到 一个问题,直接以自己QA的形式来写吧 自问自答了,需要的同学也可以直接访问segmentfault地址 官网给出实例, ...
- 使用原生javascript实现瀑布流
简介 瀑布流布局是一种很常见的布局方式,他的主要视觉体验为图片元素等宽不等高,图片元素之间的水平排序参差不齐,而且随着滚动条的滚动,数据会进行异步的加载,这样的布局有两个好处,1-有视觉的冲击力,比较 ...
- [JQuery] Using skill in JQuery
Using skill of JQuery 获取兄弟节点 $('#id').siblings() 当前元素的所有兄弟节点 $('#id').prev() 当前元素的前一个兄弟节点 $('#id').p ...
- 韦东山笔记之用busybox构建根文件系统
1 百度搜索busybox进入busybox官网(https://busybox.net/)作者:恒久力行 QQ:624668529 点击左侧DownloadSource下载最新稳定版的busybo ...
- python之其他模块的用法
1.时间模块 在Python中通常有三种表示时间的方式,分别是时间戳.元组.格式化的时间字符串. 时间模块的常用方法 time.sleep() #指定延迟时间 time.time() #当前时间的 ...
- MVC与MVVM的关系
什么是MVC? M(Model数据层) 职能单一,只负责操作数据库,执行对于的 Sql 语句,进行数据的CRUD C: create 增加 R: Read 读取 U: update 修改 D: Del ...
- 可视化工具Navicat的使用/pymysql模块的使用
一.可视化工具Navicat的使用 1.官网下载:http://www.navicat.com/en/products/navicat-for-mysql 2.网盘下载:http://pan.baid ...
- fish 常用主题推荐
在安装fish的前提下 omf install zish omf theme zish zish
- [转]Jetson TX1 开发教程(1)配置与刷机
开箱 Jetson TX1是英伟达公司新出的GPU开发板,拥有世界上先进的嵌入式视觉计算系统,提供高性能.新技术和极佳的开发平台.在进行配置和刷机工作之前,先来一张全家福: 可以看到,Jetson T ...