HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 3024 Accepted Submission(s): 930
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
现在给出a, b, n,你能求出F[n]的值吗?
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
60
#include<bits/stdc++.h>
#define N 2
#define mes(x) memset(x, 0, sizeof(x));
#define ll __int64
long long mod = 1e9+;
const int MAX = 1e9+;
using namespace std;
struct mat{
ll a[N][N];
mat(){
memset(a, , sizeof(a));
}
mat operator *(mat b){
mat c;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
for(int k=;k<N;k++)
c.a[i][j] = (c.a[i][j]+a[i][k]*b.a[k][j])%mod;
return c;
}
};
mat f(mat x,ll m){
mat t;
for(int i=;i<N;i++)
t.a[i][i] = ;
while(m){
if(m% == ) t = t*x;
x = x*x;
m >>= ;
}
return t;
}
ll powermod(ll a, ll b, ll c){
ll ans = ;
a = a % c;
while(b>) {
if(b % == )
ans = (ans * a) % c;
b = b/;
a = (a * a) % c;
}
return ans;
}
ll eular(ll n)
{
ll ret=,i;
for(i=;i*i<=n;i++)
{
if(n%i==)
{
n/=i,ret*=i-;
while(n%i==) n/=i,ret*=i;
}
}
if(n>) ret*=n-;
return ret;
}
ll fmod(ll n){//第n项斐波那契取模
if(n==||n==-) return ;
if(n==) return ;
mat A, s;
s.a[][] = ;s.a[][] = ;
A.a[][] = A.a[][] = A.a[][] = ;
s = s*f(A, n-);
return s.a[][];
}
int main()
{
ll n, a, b, ans;
mod = eular(mod);
while(~scanf("%I64d%I64d%I64d", &a, &b, &n)){
//F(n) = a^(f(n-1))*b^(f(n));
ans = powermod(a, fmod(n-), MAX)*powermod(b, fmod(n), MAX)%MAX;
printf("%I64d\n", ans);
}
return ;
}
HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理的更多相关文章
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Problem ...
- POJ 3070 Fibonacci【斐波那契数列/矩阵快速幂】
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 17171 Accepted: 11999 Descr ...
- 洛谷- P1306 斐波那契公约数 - 矩阵快速幂 斐波那契性质
P1306 斐波那契公约数:https://www.luogu.org/problemnew/show/P1306 这道题目就是求第n项和第m项的斐波那契数字,然后让这两个数求GCD,输出答案的后8位 ...
- [bzoj 1409] Password 矩阵快速幂+欧拉函数
考试的时候想到了矩阵快速幂+快速幂,但是忘(bu)了(hui)欧拉定理. 然后gg了35分. 题目显而易见,让求一个数的幂,幂是斐波那契数列里的一项,考虑到斐波那契也很大,所以我们就需要欧拉定理了 p ...
- poj3070 (斐波那契,矩阵快速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9630 Accepted: 6839 Descrip ...
随机推荐
- java冒泡排序算法
/** * 冒泡排序算法:每次 * @author shaobn * @description 每次都会确定一个最大的值 即固定了,所以会每次-i; */ public class Test1 { p ...
- paper 6:支持向量机系列三:Kernel —— 介绍核方法,并由此将支持向量机推广到非线性的情况。
前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的.不过,由于是线性方法,所以对非线性的数据就没有办法处理了.例如图中的两类数据,分别分布为两个圆圈的形状,不论 ...
- FRM-92101解决办法
/u02/UAT/inst/apps/UAT_newerp3/logs/ora/10.1.3/opmn/forms_default_group_1/ http://blog.csdn.net/orth ...
- DMA-330(一)
DMA Controller的interface: DMA Controller提供这些feature: 1)instruction set,对DMA transfer进行program 2)AXI ...
- jquery ui和jquery easy ui的区别
jquery ui 是jquery开发团队 开发,适用于网站式的页面.jquery easyui 是第三方基于jquery开发,适用于应用程序式的页面. 两者的方法调用也略有不同:jquery ui ...
- SQL2005中的事务与锁定(二)- 转载
------------------------------------------------------------------------ -- Author : HappyFlyStone ...
- EL表达式,JSTL:jsp standard Tag Library
1.EL表达式的作用: 1.1访问Bean的属性. 方式一:${对象名 . 属性名} eg:${user.name} 方式二:${对象名["属性名"]} 1.2输出简单的运 ...
- linux设备驱动归纳总结(五):3.操作硬件——IO静态映射【转】
本文转载自:http://blog.chinaunix.net/uid-25014876-id-83299.html linux设备驱动归纳总结(五):3.操作硬件——IO静态映射 xxxxxxxxx ...
- 161109、windows下查看端口占用情况
1.开始---->运行---->cmd,或者是window+R组合键,调出命令窗口 2.输入命令:netstat -ano,列出所有端口的情况.在列表中我们观察被占用的端口,比如是4915 ...
- Java中IO流中所涉及到的各类方法介绍
IO流之字节流 (1)IO用于在设备间进行数据传输的操作 (2)分类: A:流向 输入流 读取数据 输出流 写出数据 B:数据类型 字节流 字节输入流 字节输出流 字符流 字符输入流 字符输出流 注意 ...