题解:

莫比乌斯反演

ans=sigma(x/(i*i)*miu[i])

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=;
int T,n,flag[N],p[N],tot,miu[N];
void init()
{
miu[]=;
for (int i=;i<N;i++)
{
if (!flag[i])
{
miu[i]=-;
p[++tot]=i;
}
for (int j=;j<=tot;j++)
{
int k=p[j]*i;
if (k>=N)break;
flag[k]=;
if (i%p[j]==)
{
miu[k]=;
break;
}
miu[k]-=miu[i];
}
}
}
int pd(int x)
{
int ans=;
for (int i=;i<=sqrt(x);i++)ans+=miu[i]*(x/(i*i));
return ans>=n;
}
int main()
{
scanf("%d",&T);
init();
while (T--)
{
scanf("%d",&n);
int l=,r=*n;
while (l<r)
{
int mid=((long long)l+r+)/;
if (!pd(mid))l=mid;
else r=mid-;
}
printf("%d\n",l+);
}
}

bzoj2440的更多相关文章

  1. 【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)

    [BZOJ2440]完全平方数(二分答案,莫比乌斯反演) 题面 BZOJ 题解 很显然,二分一个答案 考虑如何求小于等于这个数的非完全平方数倍数的个数 这个明显可以直接,莫比乌斯反演一下 然后这题就很 ...

  2. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  3. 【bzoj2440】 中山市选2011—完全平方数

    http://www.lydsy.com/JudgeOnline/problem.php?id=2440 (题目链接) 题意 求第K个不含有完全平方因子的数 Solution 没想到莫比乌斯还可以用来 ...

  4. [BZOJ2440]完全平方数解题报告|莫比乌斯函数的应用

    完全平方数 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱.  这天是小X的生日 ...

  5. bzoj2440 完全平方数 莫比乌斯值+容斥+二分

    莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数 ...

  6. bzoj2440(莫比乌斯函数)

    bzoj2440 题意 求第 k 个不是完全平方数(除 1 以外)的正倍数的数. 分析 利用二分法求解,二分 x ,判断 x 是否是第 k 个数即可,那么我们就要计算 [1, x] 有几个符合条件的数 ...

  7. 【BZOJ2440】完全平方数(莫比乌斯函数,容斥原理)

    题意:求第k个无平方因子数 k<=10^9 思路: 感觉这东西和欧拉筛差不多……活到老学到老,退役前学点新知识也是好的 为什么二分答案的上界是2*n?连LYY都证不出来 话说约大爷一年之前就已经 ...

  8. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  9. BZOJ2440 [中山市选2011]完全平方数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  10. 【bzoj2440】【bzoj3994】莫比乌斯反演学习

    哇..原来莫比乌斯代码这么短..顿时感觉逼格-- 写了这道题以后,才稍稍对莫比乌斯函数理解了一些 定理:和是定义在非负整数集合上的两个函数,并且满足条件,那么我们得到结论 在上面的公式中有一个函数,它 ...

随机推荐

  1. 基于iOS用CoreImage实现人脸识别

    2018-09-04更新: 很久没有更新文章了,工作之余花时间看了之前写的这篇文章并运行了之前写的配套Demo,通过打印人脸特征CIFaceFeature的属性,发现识别的效果并不是很好,具体说明见文 ...

  2. Python中什么是变量

    在Python中,变量的概念基本上和初中代数的方程变量是一致的. 例如,对于方程式 y=x*x ,x就是变量.当x=2时,计算结果是4,当x=5时,计算结果是25. 只是在计算机程序中,变量不仅可以是 ...

  3. Codeforces 36B - Fractal

    36B - Fractal 思路:分形 代码: #include<bits/stdc++.h> using namespace std; #define ll long long #def ...

  4. oracle查看表中否存在某字段,数据库是否存在某张表

      数据库是否存在某字段 SELECT COUNT(*) FROM USER_TAB_COLUMNS WHERE TABLE_NAME = '表名' AND COLUMN_NAME = '字段名'; ...

  5. (原创)PBS | SGE 智能任务投递系统monitor | python实现

    之前看到过高手写的一个monitor,用python面向对象实现的,依赖几个核心的python包,drmaa,zodb,理论上来说解决了所有的任务投递问题. 但是在复杂的集群环境下还是会经常出问题,这 ...

  6. 初步了解hg19注释文件的内容 | gtf

    hg19有哪些染色体? chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 c ...

  7. 5月21 回话控制SESSION COOKIE

    百科 HTTP普及(无状态性) 超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准.设计HTTP ...

  8. 【其他】【服务器】【2】把jar包做成服务,在Service中管理

    三个文件:service_install.xml,service_install.exe,install-service.bat: 和xx.jar放在同一个目录下 service_install.xm ...

  9. hive的jdbc使用

    ①新建maven项目,加载依赖包  在pom.xml中添加 <dependency> <groupId>jdk.tools</groupId> <artifa ...

  10. poj-2888-矩阵+polya

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 6195   Accepted: 1969 D ...