传送门

题意:

相邻珠子不能相同,旋转等价。$n$个珠子$k$中颜色,求方案数


首先中间珠子$k$种选择,$k--$
如果没有相邻不同的限制,就和$POJ\ 2154$一样了
$|C(f)|=k^{\#(f)}$
但是有了相邻不同的限制,每种循环的颜色就不能任意选择了
旋转等价循环个数是$gcd(n,i)$,同一个循环的元素相差$i$步
容易得到只要满足长度$gcd(n,i)$的一段相邻颜色不同整个环就不同了,因为这样的一段正好每个循环有一个元素
考虑$DP$,$f[i]$表示$i$个元素组成的环染色方案数
$f[i]=(k-2)*f[i-1]+(k-1)*f[i-2]$
因为这时候$i-1$是可以和$1$相同的,那样$i$有$k-1$种选择,所以加上后面的一块
显然可以用矩阵快速幂
计算的时候使用和和$POJ\ 2154$同样的技巧
最后的式子为:
$\frac{k}{n}\sum\limits_{d \mid n}{f(d)*\phi(\frac{n}{d})},\ d \neq 1$

注意:$Candy?$把矩阵的构造函数里加上了每个矩阵都初始化为单位矩阵,认为这样就不用在做矩阵快速幂前初始化了。

然后就被坑惨了......矩阵乘法里还需要零矩阵啊啊啊啊啊啊啊 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e5+,P=1e9+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n;
ll k;
int p[N];
bool notp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i;
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
inline int phi(int n){
int re=n,m=sqrt(n);
for(int i=;i<=p[]&&p[i]<=m&&p[i]<=n;i++) if(n%p[i]==){
re=re/p[i]*(p[i]-);
while(n%p[i]==) n/=p[i];
}
if(n>) re=re/n*(n-);
return re%P;
}
struct Matrix{
ll a[][];
ll* operator [](int x){return a[x];}
Matrix(){a[][]=a[][]=a[][]=a[][]=;}
void ini(){a[][]=a[][]=;}
}a,b;
Matrix operator *(Matrix a,Matrix b){
Matrix c;
for(int k=;k<;k++)
for(int i=;i<;i++) if(a[i][k])
for(int j=;j<;j++) if(b[k][j])
(c[i][j]+=a[i][k]*b[k][j])%=P;
return c;
}
Matrix operator ^(Matrix a,int b){
Matrix re;re.ini();
for(;b;b>>=,a=a*a)
if(b&) re=re*a;
return re;
}
ll F[];
ll f(int x){
if(x<=) return F[x];
Matrix re=a^(x-);
re=re*b;
return re[][];
}
inline void mod(int &x){if(x>=P) x-=P;}
inline ll Pow(ll a,int b){
ll re=;
for(;b;b>>=,a=a*a%P)
if(b&) re=re*a%P;
return re;
}
inline ll Inv(ll a){return Pow(a,P-);}
void solve(){
int m=sqrt(n),ans=;
for(int i=;i<=m;i++) if(n%i==){
if(i!=) mod(ans+= f(i)*phi(n/i)%P);
if(i*i!=n) mod(ans+= f(n/i)*phi(i)%P);
}
printf("%lld\n",ans*Inv(n)%P*(k+)%P);
}
int main(){
freopen("in","r",stdin);
sieve();
while(scanf("%d%lld",&n,&k)!=EOF){
k--;
F[]=k;F[]=k*(k-)%P;F[]=k*(k-)%P*(k-)%P;
a[][]=k-; a[][]=k-;
a[][]=; a[][]=;
b[][]=F[];b[][]=;
b[][]=F[];b[][]=;
solve();
}
}

HDU 2865 Birthday Toy [Polya 矩阵乘法]的更多相关文章

  1. HDU 5607 graph(DP+矩阵乘法)

    [题目链接] http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?cid=663&pid=1002 [题意] 给定一个有向 ...

  2. HDU 4914 Linear recursive sequence(矩阵乘法递推的优化)

    题解见X姐的论文 矩阵乘法递推的优化.仅仅是mark一下. .

  3. POJ 2888 Magic Bracelet [Polya 矩阵乘法]

    传送门 题意:竟然扯到哈利波特了.... 和上一题差不多,但颜色数很少,给出不能相邻的颜色对 可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了.... 感觉这样的环上有限制问题挺套路的...旋 ...

  4. 2014多校第五场1010 || HDU 4920 Matrix multiplication(矩阵乘法优化)

    题目链接 题意 : 给你两个n*n的矩阵,然后两个相乘得出结果是多少. 思路 :一开始因为知道会超时所以没敢用最普通的方法做,所以一直在想要怎么处理,没想到鹏哥告诉我们后台数据是随机跑的,所以极端数据 ...

  5. hdu 4920 Matrix multiplication(矩阵乘法)2014多培训学校5现场

    Matrix multiplication                                                                           Time ...

  6. HDU 2865 Birthday Toy

    题目链接 题意:n个小珠子组成的正n边形,中间有一个大珠子.有木棍相连的两个珠子不能有相同的颜色,旋转后相同视为相同的方案,求着色方案数. \(\\\) 先选定一种颜色放在中间,剩下的\(k-1\)种 ...

  7. HDU 6155 Subsequence Count(矩阵乘法+线段树+基础DP)

    题意 给定一个长度为 \(n\) 的 \(01\) 串,完成 \(m\) 种操作--操作分两种翻转 \([l,r]\) 区间中的元素.求区间 \([l,r]\) 有多少个不同的子序列. \(1 \le ...

  8. HDU - 6185 :Covering(矩阵乘法&状态压缩)

    Bob's school has a big playground, boys and girls always play games here after school. To protect bo ...

  9. HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

    一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...

随机推荐

  1. TP5.0 excel 导入导出

    引第三方的phpexcel类库放到 ThinkPHP\Library\Vendor\demo下,自己建的文件夹demo 再将Excel.class放到ThinkPHP\Library\Org\clas ...

  2. wamp apache无法启动的解决方法

    作者 grunmin 2014.03.12 14:44* 字数 535 阅读 22167评论 9喜欢 5 如题,近日在安装wamp的时候出现了apache无法启动的情况.wamp图标一直显示橙色.网上 ...

  3. Nginx负载均衡配置简单配置方法

    http://www.jb51.net/article/121235.htm Nginx作为负载均衡服务器,用户请求先到达nginx,再由nginx根据负载配置将请求转发至不同的Web服务器.下面通过 ...

  4. 5.04 toArray()有一个问题须要解决一下

    把查询数据转为数组输出,这个toArray()方法是把对像转为数组输出,本身是没啥 问题.但是里面好像少写了一句判断:应先判断这个对像是否为空!如果为空则不转换直接输出空就行了吗,否则一个空值去转成数 ...

  5. 邓_phpcms_phpcms授课思路复习

    思路: 一.目前在企业中使用比较多的cms内容管理有如下几种: 1.dedecms 2.phpcms 二.我们选择学习v9版本的phpcms,主要有以下几点原因: 1.基于MVC模式的内容管理系统 2 ...

  6. JFinal极速开发框架使用笔记(四) _JFinalDemoGenerator实体类生成及映射自动化

    运行_JFinalDemoGenerator生成实体类和映射之前的项目结构: 运行之后: 生成和改变的文件: 实体类: package com.wazn.model; import com.wazn. ...

  7. struts2 从一个action跳转到另一个action的struts.xml文件的配置

    解释: 想要用<result>跳转到另一个action,原来的配置代码是: <action name="insertDept" class="strut ...

  8. JS中获取session中传过来的值对象

    摘录自:http://www.360doc.com/content/11/0316/13/5790498_101627263.shtml 把某一对象置于session范围内,并在JSP页面中提取ses ...

  9. Django文件上传三种方式以及简单预览功能

    主要内容: 一.文件长传的三种方式 二.简单预览功能实现 一.form表单上传 1.页面代码 <!DOCTYPE html> <html lang="en"> ...

  10. hash类型

    redis的hash是一个string的key与value的映射表.适合存储对象,与string的类型相比,可以节省内存,并且方便获取整个对象 hset  设置hash field的指定值.不存在则先 ...