【Uoj34】多项式乘法(NTT,FFT)
【Uoj34】多项式乘法(NTT,FFT)
题面
题解
首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西
直接贴一下代码吧。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<complex>
using namespace std;
#define ll long long
#define RG register
#define MAX 300000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
const double Pi=acos(-1);
complex<double> a[MAX],b[MAX];
int r[MAX],n,m,l;
void FFT(complex<double> *P,int opt)
{
for(int i=0;i<n;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<n;i<<=1)
{
complex<double> W(cos(Pi/i),opt*sin(Pi/i));
for(int p=i<<1,j=0;j<n;j+=p)
{
complex<double> w(1,0);
for(int k=0;k<i;w*=W,++k)
{
complex<double> X=P[j+k],Y=w*P[i+j+k];
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
}
}
}
int main()
{
n=read();m=read();
for(int i=0;i<=n;++i)a[i]=read();
for(int i=0;i<=m;++i)b[i]=read();
m+=n;
for(n=1;n<=m;n<<=1)++l;
for(int i=0;i<n;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);FFT(b,1);
for(int i=0;i<n;++i)a[i]*=b[i];
FFT(a,-1);
for(int i=0;i<=m;++i)printf("%d ",(int)(a[i].real()/n+0.5));
puts("");
return 0;
}
我们知道\(FFT\)中使用单位复根
满足两个引理
\]
\]
单位复根在算的过程中很容易出现精度的问题
现在要找到一个拥有相同性质的东西能够代替单位复根就好了
主要是第二个性质难找
因为\(W_n\)是\(n\)次单位复根
所以:\((W_n)^n=1,(W_n)^{n/2}=-1\)
其实,这个性质可以被原根满足:
假设\(p\)的原根是\(g\)
再膜\(p\)意义下:
\(g^{\varphi(p)}=1\to g^{\varphi(p)/2}=\sqrt {1}\)
因为原根不存在一个比\(\varphi(p)\)小的数使得\(g^k=1\)
所以\(g^{\varphi(p)/2}=-1\)
我们发现上面的性质也可以满足
所以,把\(n\)次单位复根可以替换成原根的\(\varphi(p)/(2^n)\)来做
这样就解决了小数精度的问题
当然也是用来解决卷积取膜的问题
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 3000000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
const int pr=3;
const int MOD=998244353;
const int phi=MOD-1;
int n,m,r[MAX],l;
int a[MAX],b[MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void NTT(int *P,int opt)
{
for(int i=0;i<n;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<n;i<<=1)
{
int W=fpow(pr,phi/(i<<1));
for(int p=i<<1,j=0;j<n;j+=p)
{
int w=1;
for(int k=0;k<i;++k,w=1ll*w*W%MOD)
{
int X=P[j+k],Y=1ll*w*P[i+j+k]%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=(X-Y+MOD)%MOD;
}
}
}
if(opt==-1)reverse(&P[1],&P[n]);
}
int main()
{
n=read();m=read();
for(int i=0;i<=n;++i)a[i]=read();
for(int i=0;i<=m;++i)b[i]=read();
m+=n;
for(n=1;n<=m;n<<=1)++l;
for(int i=0;i<n;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
NTT(a,1);NTT(b,1);
for(int i=0;i<n;++i)a[i]=1ll*a[i]*b[i]%MOD;
NTT(a,-1);
int inv=fpow(n,MOD-2);
for(int i=0;i<n;++i)a[i]=1ll*a[i]*inv%MOD;
for(int i=0;i<=m;++i)printf("%d ",a[i]);puts("");
return 0;
}
【Uoj34】多项式乘法(NTT,FFT)的更多相关文章
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
- 洛谷P3803 【模板】多项式乘法(FFT)
P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...
- 洛谷 P3803 【模板】多项式乘法(FFT)
题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...
- 【luogu P3803】【模板】多项式乘法(FFT)
[模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...
- UOJ34 多项式乘法(NTT)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 多项式乘法,FFT与NTT
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...
- 多项式乘法(FFT)模板 && 快速数论变换(NTT)
具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...
- 洛谷P3803 【模板】多项式乘法 [NTT]
题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...
- 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)
题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...
- UVALive - 6886 Golf Bot 多项式乘法(FFT)
题目链接: http://acm.hust.edu.cn/vjudge/problem/129724 Golf Bot Time Limit: 15000MS 题意 给你n个数,m个查询,对于每个查询 ...
随机推荐
- PHP curl 常用操作
网页内容替换 $curl = curl_init(); curl_setopt($curl, CURLOPT_URL, "http://www.baidu.com"); //执行后 ...
- Swift百万线程攻破单例(Singleton)模式
一.不安全的单例实现 在上一篇文章我们给出了单例的设计模式,直接给出了线程安全的实现方法.单例的实现有多种方法,如下面: class SwiftSingleton { class var shared ...
- ng-csv 异步数据下载
相信很多码友遇到一个很坑的问题吧,就是使用ng-csv 的时候 lazy-load="true" 设置为true 还是 会下载0行数据 var getArray= functio ...
- Struts2 基本的ResultType 【学习笔记】
在struts2-core.jar/struts-default.xml中,我们可以找到关于result-type的一些配置信息,从中可以看出struts2组件默认为我们提供了这 些result-ty ...
- JVM性能监控与故障处理命令汇总(jps、jstat、jinfo、jmap、jhat、jstack)
给一个系统定位问题的时候,知识.经验是关键基础,数据是依据,工具才是运用知识处理数据的手段 使用适当的虚拟机监控和分析的工具可以加快我们分析数据.定位解决问题的速度,本文主要介绍了几款服 务器上常用的 ...
- Java爬虫----有道翻译初步
目标:http://fanyi.youdao.com/ 用爬虫实现翻译功能. 利用f12查看网页Network,可以发现 有关翻译的表单请求通过 http://fanyi.youdao.com/tr ...
- 情景linux--如何优雅地退出telnet
情景linux--在脚本中如何优雅地退出telnet 情景 telnet命令是TELNET协议的用户接口,它支持两种模式:命令模式和会话模式.虽然telnet支持许多命令,但大部分情况下,我们只是使用 ...
- Python+Selenium基础篇之1-环境搭建
Python + Selenium 自动化环境搭建过程 1. 所需组建 1.1 Selenium for python 1.2 Python 1.3 Notepad++ 作为刚初学者,这里不建议使用P ...
- Luogu P2419 [USACO08JAN]牛大赛Cow Contest
题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a p ...
- hive: join 遇到问题
在表连接时遇到一个问题: insert overwrite table BF_EVT_CRD_CRT_TRAD2 select BF_EVT_CRD_CRT_TRAD.*, jjkdjk.CUST_N ...