题目描述

蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨。川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行前设定好目的地、同时合理分配好自己的体力是一件非常重要的事情。

由于蛋蛋装备了一辆非常好的自行车,因此在骑行过程中可以认为他仅在克服风阻做功(不受自行车本身摩擦力以及自行车与地面的摩擦力影响)。某一天他打算骑\(N\)段路,每一段内的路况可视为相同:对于第\(i\)段路,我们给出有关这段路况的3个参数 \(s_i ,k_i ,v_i'\) ,其中 \(s_i\) 表示这段路的长度, \(k_i\) 表示这段路的风阻系数, \(v_i'\) 表示这段路上的风速(表示在这段路上他遇到了顺风,反之则意味着他将受逆风影响)。若某一时刻在这段路上骑车速度为\(v\),则他受到的风阻大小为 \(F = k_i ( v - v_i' )^2\)(这样若在长度为\(s\)的路程内保持骑行速度\(v\)不变,则他消耗能量(做功)\(E = k_i ( v - vi' )^2 s\)。

设蛋蛋在这天开始时的体能值是 \(Eu\) ,请帮助他设计一种行车方案,使他在有限的体力内用最短的时间到达目的地。请告诉他最短的时间\(T\)是多少。

输入输出格式

输入格式:

第一行包含一个正整数\(N\)和一个实数\(Eu\),分别表示路段的数量以及蛋蛋的体能值。

接下来\(N\)行分别描述\(N\)个路段,每行有3个实数 \(s_i , k_i , v_i'\) ,分别表示第 \(i\) 段路的长度,风阻系数以及风速。

输出格式:

输出一个实数\(T\),表示蛋蛋到达目的地消耗的最短时间,要求至少保留到小数点后\(6\)位。

输入输出样例

输入样例#1:

3 10000
10000 10 5
20000 15 8
50000 5 6

输出样例#1:

12531.34496464

说明

【数据规模与约定】

对于10%的数据,\(N=1\);

对于40%的数据,\(N<=2\);

对于60%的数据,\(N<=100\);

对于80%的数据,\(N<=1000\);

对于所有数据,\(N \leq10000\),\(0 \leq Eu \leq 10^8,0 < s_i \leq 100000,0 < k_i \leq 1,-100 < v_i' < 100\)。数据保证最终的答案不会超过\(10^5\)。

【提示】

必然存在一种最优的体力方案满足:蛋蛋在每段路上都采用匀速骑行的方式。

题解

先讲一讲拉格朗日乘数法:

拉格朗日乘数法是用来解决多元函数的最优值问题(最大、最小)

一般形式为:函数\(f(x_1,x_2,x_3..x_n)\)满足限制\(g_i(x_1,x_2,x_3...x_n)=0,(i\in 1,2,3....m)\)

解法:定义\(h(x_1,x_2,x_3...x_n,\lambda_1,\lambda_2,\lambda_3...\lambda_m)=f(x_1,x_2,x_3...x_n)+\Sigma_{i=1}^m\lambda_ig_i(x_1,x_2,x_3...x_n)\)

函数\(h\)的极值就是函数\(f\)的最优值

\(h\)极值用导数求

再回到这道题,只需要满足一种限制:\(g(x)=\Sigma_{i=1}^n s_i\ast k_i(x_i-v_i')^2\leq Eu\),并且,当\(g(x)=Eu\)时最优;

于是就有\(g(x)\)函数:\(g(x)=\Sigma_{i=1}^n s_i\ast k_i(x_i-v_i')^2-Eu=0\)

\(f(x)\)函数为:\(f(x)=\Sigma_{i=1}^n \frac {s_i}{x_i}\),\(x_i\)为每段路的骑行速度

则\(h(x)=\Sigma_{i=1}^n \frac{s_i}{x_i}+\lambda\ast\Sigma s_i\ast k_i(x_i-v_i')^2-Eu\)

将它求导:\(h'(x)=-\Sigma_{i=1}^n \frac{s_i}{x_i^2}+2\ast\lambda\ast\Sigma_{i=1}^n s_i\ast k_i(x_i-v_i')\)

二分求\(h'(x)=0\)时的\(x\)值

二分时每一个\(x_i\)也是二分求

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstring>
#include<queue>
#include<stack>
#include<set>
#include<bitset>
#include<vector>
#include<cstdlib>
#define QAQ int
#define TAT long long
#define OwO bool
#define ORZ double
#define F(i,j,n) for(QAQ i=j;i<=n;++i)
#define E(i,j,n) for(QAQ i=j;i>=n;--i)
#define MES(i,j) memset(i,j,sizeof(i))
#define MEC(i,j) memcpy(i,j,sizeof(j))
using namespace std;
const QAQ N=10005;
QAQ n;
ORZ m;
struct data{
ORZ s,k,v;
}a[N];
ORZ l,r,ans,v[N];
OwO pd(ORZ lmd){
F(i,1,n){
ORZ l=a[i].v,r=1000000,ans=0;
F(j,1,100){
ORZ mid=(l+r)/2.0;
if(2*lmd*a[i].k*mid*mid*(mid-a[i].v)<=1.0) l=mid,ans=mid;
else r=mid;
}
v[i]=ans;
}
ORZ ans=0;
F(i,1,n) ans+=a[i].k*(v[i]-a[i].v)*(v[i]-a[i].v)*a[i].s;
return ans>=m;
}
QAQ main(){
scanf("%d%lf",&n,&m);
F(i,1,n) scanf("%lf%lf%lf",&a[i].s,&a[i].k,&a[i].v);
l=0;r=10000000;
F(i,1,100){
ORZ mid=(l+r)/2.0;
if(pd(mid)) l=mid;
else r=mid;
}
F(i,1,n) ans+=a[i].s/v[i];
printf("%.6lf\n",ans);
return 0;
}

bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)的更多相关文章

  1. [BZOJ2876][NOI2012]骑行川藏(拉格朗日乘数法)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2876 分析:就是要求约束条件下函数的极值,于是拉格朗日乘数列方程,发现化简后的关于vi ...

  2. bzoj 2876: [Noi2012]骑行川藏 拉格朗日数乘

    2876: [Noi2012]骑行川藏 Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1033  Solved: ...

  3. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  4. bzoj2876 [Noi2012]骑行川藏

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  5. [NOI2012]骑行川藏——拉格朗日乘子法

    原题链接 不会啊,只好现学了拉格朗日乘子法,简单记录一下 前置芝士:拉格朗日乘子法 要求\(n\)元目标函数\(f(x_1,x_2,...,x_n)\)的极值,且有\(m\)个约束函数形如\(h_i( ...

  6. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  7. 题解 洛谷 P2179 【[NOI2012]骑行川藏】

    题意为在满足\(\sum\limits_{i=1}^nk_i(v_i-v_i^\prime)^2s_i\leqslant E_U\)的条件下最小化\(\sum\limits_{i=1}^n\frac{ ...

  8. 2876: [Noi2012]骑行川藏 - BZOJ

    Description 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因 ...

  9. 【BZOJ】2876: [Noi2012]骑行川藏

    题意 给出\(s_i, k_i, v_i', E\),满足\(\sum_{i=1}^{n} k_i s_i ( v_i - v_i' )^2 \le E, v_i > v_i'\),最小化$ \ ...

随机推荐

  1. Flume环境搭建_五种案例

    Flume环境搭建_五种案例 http://flume.apache.org/FlumeUserGuide.html A simple example Here, we give an example ...

  2. Sublime Text 使用介绍、全套快捷键及插件推荐

    开篇:如果说Notepad++是一款不错Code神器,那么Sublime Text应当称得上是神器滴哥.Sublime Text最大的优点就是跨平台,Mac和Windows均可完美使用:其次是强大的插 ...

  3. (实用篇)使用PHP生成PDF文档

    http://mp.weixin.qq.com/s?__biz=MzIxMDA0OTcxNA==&mid=2654254929&idx=1&sn=8715d008d19af70 ...

  4. Spring学习之路一

    Spring 官网:http://projects.spring.io/spring-framework/ Spring下载地址:https://repo.spring.io/simple/libs- ...

  5. OpenCv函数学习(一)

    Intel Image Processing Library (IPL) typedef struct _IplImage { int nSize; /* IplImage大小 */ int ID; ...

  6. Linxu指令--crond

    前一天学习了 at 命令是针对仅运行一次的任务,循环运行的例行性计划任务,linux系统则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的计划性工作,因此这个 ...

  7. SVN中服务器地址变更

    SVN中服务器地址变更后不需要重新导项目,只要修改下SVN的服务器地址,更新一下即可.有两种方法: 方法一:通过MyEclipse中SVN插件 1.选择window→show view→other→S ...

  8. hibernate 持久化对象的三个状态

    Hibernate中的对象有3种状态 瞬时对象(TransientObjects).持久化对象(PersistentObjects)和离线对象(DetachedObjects也叫做脱管对象) Tran ...

  9. convert图像格式批量转换

    问题:利用GMT绘制生成了eps格式的图像,为了将图像插入到word中,且保持较高的分辨率,利用convert进行图像格式转换,将eps转换成tiff格式. code:  $i ${name}.tif ...

  10. GTID复制详解

    前言 GTID复制是MySQL 5.6后的新功能,在传统的方式里,主从切换后,需要找到binlog和POS点,然后执行命令change master to 指向新的主库.对于不是很有经验的人来说,往往 ...