Description

在 Byte 山的山脚下有一个洞穴入口. 这个洞穴由复杂的洞室经过隧道连接构成. 洞穴的入口是 1 号点.两个洞室要么就通过隧道连接起来,要么就经过若干隧道间接的相连. 现在决定组织办一个'King's of Byteotia Cup' 比赛. 参赛者的目标就是任意选择一条路径进入洞穴并尽快出来即可. 一条路径必须经过除了 1 之外还至少要经过其他一个洞室.一条路径中一个洞不能重复经过(除了 1 以外),类似的一条隧道也不能重复经过.

一个著名的洞穴探险家 Byteala 正准备参加这个比赛. Byteala 已经训练了数月而且他已获得了洞穴系统的一套详细资料. 对于每条隧道他都详细计算了从两个方向经过所需要的时间. 经过一个洞室的时间很短可以忽略不记. 现在Byteala 向计算一条符合条件的最优路径.

Input

第一行有两个数 n 和 m (3 <= n <= 5000, 3 <= m <= 10000) 分别表示洞室的数目以及连接他们的隧道的数目. 洞室从 1 到 n 编号. “前面洞室”的编号为 1.

接下来 m 行描述了所有的隧道. 每行四个整数 a,b,c,d 表示从洞室 a 到洞室 b 需要 c分钟的时间,而从洞室 b到洞室 a需要 d分钟的时间, 1 <= a,b <= n, a <> b, 1 <= c,d <= 10000. 你可以假设符合要求的路径肯定存在.

Output

输出一行,最少需要多少时间完成比赛.

Sample Input

3 3
1 2 4 3
2 3 4 2
1 3 1 1

Sample Output

6

HINT

经过 1, 2, 3, 1

题解

要求一个最短路,担心的就是一条边被正反经过两次。

规定第一步为$1$到$i$,并把这条边设为不可经过。然后从$i$做最短路到$1$,因为这个过程是不会经历重边的(如果经历了就不是最短路了)。

数据有点坑:不要标记数组还快一点...

数据有点卡$SPFA$:如果松弛节点时算出的$dist$比之前算出的最优$ans$还大,显然不用拓展了。

 #include<map>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define Max(a,b) ((a)>(b) ? (a):(b))
#define Min(a,b) ((a)<(b) ? (a):(b))
using namespace std;
const int N=;
const int M=;
const int lenth=;
const int INF=~0u>>; int n,m,u,v,c;
struct tt
{
int to,next,cost;
}edge[M*+];
int path[N+],top=-;
void Add(int u,int v,int c);
int ans=INF;
int tmp,tmp2; int dist[N+];
void SPFA(int u); int main()
{
freopen("zaw.in","r",stdin);
freopen("zaw.out","w",stdout);
memset(path,-,sizeof(path));
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&c);
Add(u,v,c);
scanf("%d",&c);
Add(v,u,c);
}
for (int i=path[];i!=-;i=edge[i].next)
{
tmp=edge[i].cost;
tmp2=edge[i^].cost;
edge[i].cost=edge[i^].cost=INF-1e9;
SPFA(edge[i].to);
ans=Min(ans,tmp+dist[]);
edge[i].cost=tmp;
edge[i^].cost=tmp2;
}
printf("%d\n",ans);
return ;
} void Add(int u,int v,int c)
{
edge[++top].to=v;
edge[top].cost=c;
edge[top].next=path[u];
path[u]=top;
}
void SPFA(int u)
{
memset(dist,/,sizeof(dist));
dist[u]=;
int Q[lenth+],head=,tail=;
Q[head]=u;
while (head!=tail)
{
int u=Q[head++];
head%=lenth;
for (int i=path[u];i!=-;i=edge[i].next)
{
if (dist[edge[i].to]>dist[u]+edge[i].cost&&ans>tmp+dist[u]+edge[i].cost)
{
dist[edge[i].to]=dist[u]+edge[i].cost;
Q[tail++]=edge[i].to;
tail%=lenth;
}
}
}
}

[POI 2004]ZAW的更多相关文章

  1. bzoj 2069 [ POI 2004 ] ZAW —— 多起点最短路 + 二进制划分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2069 首先,对于和 1 相连的点,一定是从某个点出发,回到另一个点: 所以需要枚举起点和终点 ...

  2. [POI 2004]SZP

    Description Byteotian 中央情报局 (BIA) 雇佣了许多特工. 他们每个人的工作就是监视另一名特工.Byteasar 国王需要进行一次秘密行动,所以他要挑选尽量多的信得过的特工. ...

  3. 解题:POI 2004 String

    题面 首先我们要有一个明确的构造思路 对于非根节点,我们把子树连上来的线两两配对,这样如果它有奇数个子树就会剩一个,这时候把这根线传给父亲即可.对于根节点还是两两配对,但是注意如果它也有奇数个子树就不 ...

  4. 解题:POI 2004 Bridge

    题面 小学数奥见祖宗(相信大多数人小学都看过这个玩意 如果你没看过这个问题,第一反应可能是让跑的最快的来回送火把,然而样例已经hack掉了这种做法,更优的做法是让跑的最快的和第二快的来回送火把.然后事 ...

  5. bzoj 2067 [ Poi 2004 ] SZN —— 二分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2067 问题1:贪心考虑,应该是每个点的儿子尽量两两配对,如果剩一个就和自己合并向上,所以 a ...

  6. SPOJ16607 IE1 - Sweets

    题面 传送门: 洛咕 SPOJ Solution 这题的想法挺妙的. . 首先,对于这种区间求答案的问题,我们一般都可以通过类似前缀和的思想一减来消去a,即求[a,b]的答案可以转化为求[1,b]-[ ...

  7. POI ZAW

    要求一个最短路,担心的就是一条边被正反经过两次. 规定第一步为1到i,并把这条边设为不可经过.然后从i做最短路到1,因为这个过程是不会经历重边的(如果经历了就不是最短路了). 求最短路用SPFA,但常 ...

  8. java使用poi将html导出word,默认打开页面视图

    <html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:o ...

  9. 利用poi导出Excel

    import java.lang.reflect.Field;import java.lang.reflect.InvocationTargetException;import java.lang.r ...

随机推荐

  1. 【Redis使用系列】redis设置登陆密码

    找到安装redis的配置文件,找到redis.comf文件找到#requirepass foobared 新建一行 requirepass  xxxx 你的密码 ,然后重启.再登录的时候可以登录,但是 ...

  2. QT5.8 for embedded

    http://doc.qt.io/qt-5/embedded-linux.html 先占座~

  3. C语言第二周作业

    一.PTA实验作业 题目一:7-1 计算分段函数 1.实验代码 double x,y; scanf("%lf", &x); if(x >= 0){ y=pow(x,0 ...

  4. 【iOS】Swift LAZY 修饰符和 LAZY 方法

    延时加载或者说延时初始化是很常用的优化方法,在构建和生成新的对象的时候,内存分配会在运行时耗费不少时间,如果有一些对象的属性和内容非常复杂的话,这个时间更是不可忽略.另外,有些情况下我们并不会立即用到 ...

  5. hdu 5274 Dylans loves tree

    Dylans loves tree http://acm.hdu.edu.cn/showproblem.php?pid=5274 Time Limit: 2000/1000 MS (Java/Othe ...

  6. ajax的四种type类型

    1.GET请求会向数据库发索取数据的请求,从而来获取信息,该请求就像数据库的select操作一样,只是用来查询一下数据,不会修改.增加数据,不会影响资源的内容,即该请求不会产生副作用.无论进行多少次操 ...

  7. JAVA_SE基础——11.Java中的运算符

    在程序设计中,运算符应用得十分广泛,通过运算符可以将两个变量进行任意运算.数学中的"+"."-"."*"."/"运算符同 ...

  8. Django rest framework源码分析(4)----版本

    版本 新建一个工程Myproject和一个app名为api (1)api/models.py from django.db import models class UserInfo(models.Mo ...

  9. Linux入门(1)_VMware和系统分区和系统安装和远程登陆管理

    1 VMware的安装和使用 注意有 快照 和 克隆 的功能. 快照相当于建立一个 系统还原点, 可以随时恢复到原来状态. 克隆功能可以复制一个和当前一样的系统,并可以选择链接安装,只使用很少的空间就 ...

  10. SpringBoot入门:Spring Data JPA 和 JPA(理论)

    参考链接: Spring Data JPA - Reference Documentation Spring Data JPA--参考文档 中文版 纯洁的微笑:http://www.ityouknow ...