Description

  已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$

  求这个方程在[1,m]内的整数解(n和m均为正整数)。

Input

  第一行包含2个整数n、m,每两个整数之间用一个空格隔开。
  接下来的n+1行每行包含一个整数,依次为a0,a1,a2,...,an。

Output

  第一行输出方程在[1,m]内的整数解的个数。

  接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,m]内的一个整数解。

Sample Input

2 10
2
-3
1

Sample Output

2
1
2

HINT

  对于100%的数据,0<n≤100,|ai|≤10^10000,an≠0,m≤1000000。

Source

Solution

  考虑对等式左边整体对质数取模,这部分用秦九韶算法实现可以大大提速,并且可以避免大量的高精度运算

  假设模数为$p$,不难发现在模$p$意义下$x$与$x+kp$得到的结果一样,所以我们可以预处理出$[0,p)$的答案,推出$[1,m]$是否可能是解

  因为$p$很小会有类似哈希冲撞的事发生,所以我们可以选取多个$p$。据说是选$5$个$20000$左右的质数就可以,然而我换过好几个质数,不是$WA$就是$TLE$,QAQ

  代码里的质数是网上找的,并不清楚为什么这人的人品能那么好QAQ,$4$个质数就可以$AC$QAQ

  (方法会就行了,这道题考的不是质数的选取,质数照抄就行了)

 #include <bits/stdc++.h>
using namespace std;
char s[][];
int p[] = {, , , };
int n, a[], ans[];
bool vis[][]; bool check(int x)
{
if(!vis[][x % ]) return false;
if(!vis[][x % ]) return false;
if(!vis[][x % ]) return false;
if(!vis[][x % ]) return false;
return true;
} bool is_zero(int k, int x)
{
long long ans = a[n];
for(int i = n - ; ~i; --i)
ans = (ans * x + a[i]) % p[k];
return !ans;
} int main()
{
int m, tot = ;
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i)
scanf("%s", &s[i]);
for(int i = ; i < ; ++i)
{
memset(a, , sizeof(a));
for(int j = ; j <= n; ++j)
if(s[j][] == '-')
for(int k = ; s[j][k]; ++k)
a[j] = (a[j] * - s[j][k] + + p[i]) % p[i];
else
for(int k = ; s[j][k]; ++k)
a[j] = (a[j] * + s[j][k] - ) % p[i];
for(int j = ; j < p[i]; ++j)
vis[i][j] = is_zero(i, j);
}
for(int i = ; i <= m; ++i)
if(check(i)) ans[++tot] = i;
printf("%d\n", tot);
for(int i = ; i <= tot; ++i)
printf("%d\n", ans[i]);
return ;
}

[BZOJ3751] [NOIP2014] 解方程 (数学)的更多相关文章

  1. [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  2. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  3. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  4. BZOJ3751 NOIP2014 解方程(Hash)

    题目链接  BZOJ3751 这道题的关键就是选取取模的质数. 我选了4个大概几万的质数,这样刚好不会T 然后统计答案的时候如果对于当前质数,产生了一个解. 那么对于那些对这个质数取模结果为这个数的数 ...

  5. 【秦九韶算法】【字符串哈希】bzoj3751 [NOIP2014]解方程

    在模意义下枚举m进行验证,多设置几个模数,而且小一些,利用f(x+p)%p=f(x)%p降低计算次数.UOJ AC,bzoj OLE. #include<cstdio> #include& ...

  6. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  7. LOJ2503 NOIP2014 解方程 【HASH】

    LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...

  8. bzoj 3751: [NOIP2014]解方程 同余系枚举

    3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...

  9. bzoj3751 / P2312 解方程

    P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...

随机推荐

  1. vue 路由懒加载 使用,优化对比

    vue这种单页面应用,如果没有应用懒加载,运用webpack打包后的文件将会异常的大,造成进入首页时,需要加载的内容过多,时间过长,会出啊先长时间的白屏,即使做了loading也是不利于用户体验,而运 ...

  2. 在一台电脑上运行两个或两个以上的tomcat

    前言 在开发过程中,我们可能会同时用到多个tomcat,但以正常安装的形式安装多个tomcat,无论启动哪一个tomcat,打开的都是配置了环境变量的那一个tomcat,所以进行一些设置,以达到我们同 ...

  3. Mysql--Database Exception (#42) 数据库错误

    mysql是phpstudy中的mysql,出现这个错误八成是php.ini中没有设置mysql.sock 使用探针或者phpinfo查看php.ini的位置. sudo find / -name m ...

  4. Java集合框架(一)—— Collection、Iterator和Foreach的用法

    1.Java集合概述 在编程中,常常需要集中存放多个数据.当然我们可以使用数组来保存多个对象.但数组长度不可变化,一旦在初始化时指定了数组长度,则这个数组长度是不可变的,如果需要保存个数变化的数据,数 ...

  5. SpringBoot SpringSession redis 共享 SESSION

    号称无缝整合httpsession 共享, 但注意如果存在第三方框架,例如SESSION并发控制,这个是需要自己重写session名单的. 关于redis session 共享 的session并发控 ...

  6. mybatis 3.x源码深度解析与最佳实践(最完整原创)

    mybatis 3.x源码深度解析与最佳实践 1 环境准备 1.1 mybatis介绍以及框架源码的学习目标 1.2 本系列源码解析的方式 1.3 环境搭建 1.4 从Hello World开始 2 ...

  7. react按需加载(getComponent优美写法),并指定输出模块名称解决缓存(getComponent与chunkFilename)

    react配合webpack进行按需加载的方法很简单,Route的component改为getComponent,组件用require.ensure的方式获取,并在webpack中配置chunkFil ...

  8. WireShark过滤解析HTTP/TCP

    过滤器的使用: 可利用“&&”(表示“与”)和“||”(表示“或”)来组合使用多个限制规则, 比如“(http && ip.dst == 64.233.189.104) ...

  9. RTlinux3.2安装

    ( 1 ).前言 2003 年以后, fmslabs 的 RTLinux Free 版本为 3.2Pre ,和以前的 RTLinux 3.1 比较,不再需要必须从 2.4.4 的内核上安装. RTLi ...

  10. E: 无法获得锁 /var/lib/apt/lists/lock - open (11: 资源暂时不可用)

    1 错误描述 youhaidong@youhaidong:~$ sudo apt-get update E: 无法获得锁 /var/lib/apt/lists/lock - open (11: 资源暂 ...