【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Solution
把所有边权相同的视为边组,每一组边组在最小生成树的条数是固定的,对连通性的贡献也是固定的。(证明可以看http://www.cnblogs.com/Fatedayt/archive/2012/05/10/2494877.html)
在确定贡献之后,爆搜每一组边即可。
用矩阵树也可以做,然而我还不会QwQ。
Code
并查集不能路径压缩,不然就不好回溯时还原了。
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1e3+,mod=; struct edge{
int u,v,w;
bool operator<(const edge&a)
const{return w<a.w;}
}e[maxn];
int l[maxn],r[maxn],t[maxn],cnt;
int p[maxn];
int find(int x){return p[x]==x?x:find(p[x]);}
int n,m; int ret;
void dfs(int i,int j,int k){
if(j==r[i]+){
if(k==t[i]) ret++,ret%=mod;
return;
}
int x=find(e[j].u),y=find(e[j].v);
if(x!=y){
p[x]=y;
dfs(i,j+,k+);
p[x]=x;
}
dfs(i,j+,k);
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
sort(e+,e+m+); int tot=;
for(int i=;i<=n;i++) p[i]=i;
for(int i=;i<=m;i++){
if(i==||e[i].w!=e[i-].w){
r[cnt]=i-;
l[++cnt]=i;
}
int x=find(e[i].u),y=find(e[i].v);
if(x!=y){
t[cnt]++;
tot++;
p[x]=y;
}
}
r[cnt]=m; if(tot!=n-){
printf("0\n");
return ;
}
for(int i=;i<=n;i++) p[i]=i; int ans=;
for(int i=;i<=cnt;i++){
ret=;
dfs(i,l[i],);
ans=ans*ret,ans%=mod;
for(int j=l[i];j<=r[i];j++){
int x=find(e[j].u),y=find(e[j].v);
if(x!=y) p[x]=y;
}
}
printf("%d",ans);
return ;
}
【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数的更多相关文章
- bzoj1016 [JSOI2008]最小生成树计数
1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3517 Solved: 1396[Submit][St ...
- bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)
1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等 就是说如果一种方案中权值为1的边有n条 ...
- BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 【Matrix-tree定理】【并查集】【kruscal算法】bzoj1016 [JSOI2008]最小生成树计数
题意:求一个图的最小生成树个数. 矩阵树定理:一张无向图的生成树个数 = (度数矩阵 - 邻接矩阵)的任意一个n-1主子式的值. 度数矩阵除了对角线上D[i][i]为i的度数(不计自环)外,其他位置是 ...
- [BZOJ1016][JSOI2008]最小生成树计数(结论题)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...
- [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 2018.09.24 bzoj1016: [JSOI2008]最小生成树计数(并查集+搜索)
传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形 ...
- [BZOJ1016][JSOI2008]最小生成树计数 最小生成树 搜索
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1016 做这道题之前需要知道一些结论,同一个图的最小生成树中相同权值的边的个数是不会变的,如 ...
随机推荐
- java设计模式--观察者模式(Observer)
java设计模式--观察者模式(Observer) java设计模式--观察者模式(Observer) 观察者模式的定义: 定义对象间的一种一对多的依赖关系.当一个对象的状态发生改变时,所有依赖于它的 ...
- java多线程的理解
java多线程的理解 线程的5种状态:新建,就绪,运行,阻塞,死亡. Thread.sleep:线程 运行状态 转为 阻塞状态,(其它线程启动运行) Thread.yield: 线程 运行 ...
- 初识java——运算符和表达式以及注释
java中有不同的运算符,并且在运算中有着优先级的排序计算,其中++和——的优先级最高,最先计算 运算符注意:1,增量和减量运算符++,——. int a=1++; int b=++1; 其中1++表 ...
- Mac 电脑前端环境配置
恍惚间,好久没有在外面写过随笔了.在阿里的那两年,学到了许多,也成长了许多,认识了很多可爱的人,也明白了很多社会的事.最后种种艰难抉择,我来到了美团成都,一个贫穷落后但更自由开放弹性的地方.已经误以为 ...
- Django signals机制的几个简单问题
1.Django signals机制不是异步执行,是同步执行,所以需要异步执行的耗时任务不能用这个. 2.异步耗时任务不用这个,那些用signals?主要是解耦那些多次重复场合被调用的函数.直接用事件 ...
- Django升级1.8的一些问题
1.最明显的问题当然是Settings设置中关于模板的设置数据结构发生变化,这个就不细说了,你开个Django的1.8的新项目就知道怎么改了 2.migrations问题,这个问题是1.8最主要的修改 ...
- MAC OSX下用pip安装lxml时遇到xmlversion.h not found的解决办法
http://blog.csdn.NET/wave_1102/article/details/37730589 今天在Mac下用pip安装lxml,总是报如下错误: etree_defs.h::: f ...
- 用尽洪荒之力学习Flask源码
WSGIapp.run()werkzeug@app.route('/')ContextLocalLocalStackLocalProxyContext CreateStack pushStack po ...
- html5 兼容版本 video
<!-- first try HTML5 playback: if serving as XML, expand `controls` to `controls="controls&q ...
- 读《图解HTTP》有感-(HTTP报文内的HTTP消息)
写在前面 HTTP通信包括从客户端到服务端的的请求以及服务端返回客户端的响应 正文 1.什么是HTTP报文?它由什么构成?包含几个部分? 用于HTTP协议交互的信息就是HTTP报文:它是由多行数据构成 ...