BZOJ_1801_[Ahoi2009]chess 中国象棋_DP
BZOJ_1801_[Ahoi2009]chess 中国象棋_DP
Description
Input
Output
Sample Input
Sample Output
HINT
除了在3个格子中都放满炮的的情况外,其它的都可以.
100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6
容易知道一行里最多放2个炮。
设F[i][j][k]为当前在第i行有j列放了1个炮,有k列放了2个炮。
这行可能放0,1,2个。
分别乘上组合数转移。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=9999973;
ll f[110][110][110];
ll n,m;
int main() {
scanf("%lld%lld",&n,&m);
int i,j,k;
f[0][0][0]=1;
for(i=0;i<n;i++) {
for(j=0;j<=m;j++) {
for(k=0;j+k<=m;k++) {
f[i+1][j][k]=(f[i+1][j][k]+f[i][j][k])%mod; if(j+1+k<=m)f[i+1][j+1][k]=(f[i+1][j+1][k]+f[i][j][k]*(m-j-k))%mod;
if(j) f[i+1][j-1][k+1]=(f[i+1][j-1][k+1]+f[i][j][k]*j)%mod;
//if(j+k+1<=m)f[i+1][j][k+1]=(f[i+1][j][k+1]+f[i][j][k]*k)%mod; if(m-j-k>=2)f[i+1][j+2][k]=(f[i+1][j+2][k]+f[i][j][k]*(m-j-k)*(m-j-k-1)/2)%mod;
if(j>=2) f[i+1][j-2][k+2]=(f[i+1][j-2][k+2]+f[i][j][k]*j*(j-1)/2)%mod;
if(m-j-k>=1)f[i+1][j][k+1]=(f[i+1][j][k+1]+f[i][j][k]*(m-j-k)*j)%mod;
}
}
}
ll ans=0;
for(i=0;i<=m;i++) for(j=0;i+j<=m;j++) ans=(ans+f[n][i][j])%mod;
printf("%lld\n",ans);
}
BZOJ_1801_[Ahoi2009]chess 中国象棋_DP的更多相关文章
- BZOJ 1801: [Ahoi2009]chess 中国象棋( dp )
dp(i, j, k)表示考虑了前i行, 放了0个炮的有j列, 放了1个炮的有k列. 时间复杂度O(NM^2) -------------------------------------------- ...
- 【BZOJ1801】[Ahoi2009]chess 中国象棋 DP
[BZOJ1801][Ahoi2009]chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮 ...
- BZOJ1801 Ahoi2009 chess 中国象棋 【DP+组合计数】*
BZOJ1801 Ahoi2009 chess 中国象棋 Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行 ...
- Bzoj 1081 [Ahoi2009] chess 中国象棋
bzoj 1081 [Ahoi2009] chess 中国象棋 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1801 状态比较难设,的确 ...
- BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)
题目链接 [Ahoi2009]chess 中国象棋 设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数 分6种情况讨论,依次状态转移. #include <b ...
- bzoj1801: [Ahoi2009]chess 中国象棋(DP)
1801: [Ahoi2009]chess 中国象棋 题目:传送门 题解: 表示自己的DP菜的抠脚 %题解... 定义f[i][j][k]表示前i行 仅有一个棋子的有j列 有两个棋子的有k个 的方案数 ...
- [luogu2051][bzoj1801][AHOI2009]chess中国象棋【动态规划】
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
- bzoj 1801: [Ahoi2009]chess 中国象棋
Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. Input 一行包含两个整数N, ...
- BZOJ1801:[Ahoi2009]chess 中国象棋
Time Limit: 10 Sec Memory Limit: 64 MB Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置 ...
随机推荐
- 进程间通信——IPC之共享内存
共享内存是三个IPC机制中的一个.它允许两个不相关的进程访问同一个逻辑内存.共享内存是在两个正在进行的进程之间传递数据的一种非常有效的方式. 大多数的共享内存的实现,都把由不同进程之间共享 ...
- 如何卸载Centos自带jdk
1.搜索安装的jdk: rpm -qa|grep jdk 结果如下: java-1.7.0-openjdk-1.7.0.45-2.4.3.3.el6.x86_64 java-1.6.0-openjdk ...
- Hibernate中配置文件的学习
首先我们看一下hibernate的主配置文件 <!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Conf ...
- PyCOn2013大会笔记
DAE的设计 By洪强宁 hongon@douban.com 3个aaS服务都不能模块化灵活组合服务 DAE的起因:代码横向拆分模块化,重用基础设施 最佳实践对新App复用 Scale SA D ...
- 成功实现在VS2017下编译含<pthread.h>的代码:
VS2017配置使用#<pthread.h> https://blog.csdn.net/cry1994/article/details/79115394(原来SystemWow64里面存 ...
- JAVAEE——BOS物流项目13:Quartz入门案例、核心概念、cron 表达式的格式(了解)
1.quartz入门案例 本入门案例基于spring和quartz整合完成. 第一步:创建maven工程,导入spring和quartz相关依赖 第二步:创建任务类 第三步:在spring配置文件中配 ...
- java中Collections.sort()方法实现集合排序
1.Integer/String泛型的List进行排序 List <Integer> integerlist = new ArrayList<Integer>(); //定 ...
- 学习了解CyclicBarrier
CyclicBarrier我的理解就是一个线程等待器,用途就是将注册了这个barrier的线程卡在同一个位置,直到注册这个barrier的所有线程都完成之后,继续执行.下面是一个学习过程中采用的示例, ...
- NPOI生成不规则Excel表格(并以流的形式下载,不将文件保存在服务器上,直接在客户端导出excel)
//下载NPOI类库并添加引用 using NPOI.SS.UserModel; using NPOI.HSSF.UserModel; using NPOI.SS.Util; public stati ...
- python之文件操作(基础)
文件操作作为python基础中的重点,必须要掌握. 1.默认我们在本地电脑E盘新建wp.txt文件进行测试,文件内容如下设置. 2.进行代码编写: f=open("E://wp.txt&qu ...