[DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法
觉得有用的话,欢迎一起讨论相互学习~Follow Me
2.1 mini-batch gradient descent mini-batch梯度下降法
我们将训练数据组合到一个大的矩阵中
\(X=\begin{bmatrix}x^{(1)}&x^{(2)}&x^{(3)}&x^{(4)}&x^{(5)}...x^{(n)}\end{bmatrix}\)
\(Y=\begin{bmatrix}y^{(1)}&y^{(2)}&y^{(3)}&y^{(4)}&y^{(5)}...y^{(n)}\end{bmatrix}\)
在对整个数据集进行梯度下降时,你要做的是,你必须训练整个训练集,然后才能进行一步梯度下降法.然后需要重新训练整个数据集,才能进行下一步梯度下降法.所以你在训练整个训练集的一部分时就进行梯度下降,你的算法速度会更快.你可以把训练集分割为小一点的子训练集.这些小的训练集被称为mini-batch.每次训练一个mini-batch后就对模型的权值进行梯度下降的算法叫做mini-batch梯度下降法.
2.2 理解mini-batch梯度下降
在batch梯度下降中,每次迭代你都需要遍历整个训练集,可以预期正常情况下每次迭代的成本函数都会下降.

使用mini-batch梯度下降法时,会发现cost并不是每次迭代都下降的,看到的图像可能是以下这种情况.总体走向朝下但是有更多的噪声.

你需要决定的变量之一就是mini-batch的大小,m就是训练集的大小.
极端情况下,如果m=mini-batch,其实就是batch梯度下降法.在这种极端情况下,假设mini-batch大小为1一次只处理一个,就有了新的算法,叫做随机梯度下降法.
看两个极端情况下,成本函数的优化情况:
假设图中蓝点是最小值点,其中batch梯度下降从某处开始,相对噪声低些,幅度也大一些:

对于随机剃度下降,你只对一个样本进行梯度下降,大部分时候你向着全局最小值靠近,但是有时候你会偏离方向,因为那个样本恰好给你指的方向不正确.因此随机梯度下降法是有很多噪声的.平均来看会向着正确的方向,不过有时候也会方向错误.
因为随机梯度下降法永远不会收敛,而是会一直在最小值附近波动.但它并不会达到最小值并停留于此.

不同的梯度下降算法的利和弊
每次迭代需要处理大量训练样本,该算法主要弊端是特别是在训练样本数量巨大的时候,单次迭代耗时太长,如果训练样本不大,batch梯度下降法运行的很好.
相反如果使用随机梯度下降法,每次只训练一个训练样本,通过减少学习率,噪声也会相应的减少.但是其一大缺点是:你会失去所有向量化带给你的加速.
指导原则
如果训练集较小,就直接使用batch梯度下降法,样本集较小就没必要使用mini-batch梯度下降法.这里说的是少于2000个样本.这样比较适合使用batch梯度下降法.
不然如果数据量较大,一般的mini-batch大小为64到512,考虑到计算机的结构,一般来说,mini-batch的值取2的幂次方数比较合适,会相应的加快训练速度.
[DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法的更多相关文章
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...
- 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...
- Coursera Deep Learning笔记 改善深层神经网络:优化算法
笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的 ...
- [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...
- [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡 ...
- [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...
- deeplearning.ai 改善深层神经网络 week2 优化算法 听课笔记
这一周的主题是优化算法. 1. Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...
- deeplearning.ai 改善深层神经网络 week2 优化算法
这一周的主题是优化算法. 1. Mini-batch: 上一门课讨论的向量化的目的是去掉for循环加速优化计算,X = [x(1) x(2) x(3) ... x(m)],X的每一个列向量x(i)是 ...
随机推荐
- JIRA开启时间追踪并为问题记录工作日志
在升级版的JIRA中(4.2or4.3),我们可以使用其记录工作日志的功能.之前研究了很长时间,就是找不到初始预估时间在哪里设置,但是剩余工作时间与耗费时间都可以填写.根据官网的帮助文档也没找到合适的 ...
- Codeforces 777B Game of Credit Cards
B. Game of Credit Cards time limit per test:2 seconds memory limit per test:256 megabytes input:stan ...
- BZOJ:4219: 跑得比谁都快 3007: 拯救小云公主
4219: 跑得比谁都快 3007: 拯救小云公主 三角剖分的解释可以看这里:http://www.cnblogs.com/Enceladus/p/6706444.html 后一道是前一道的弱化版. ...
- JSZX_HC_2016_R5
#1 ccz 200 #2 CTL 130 #3 KPM 130 本来以为准备挺充分的,开始后还是出现一些状况 >_< 好在还算顺利…… A AC人数:4 平均分:70 题目描述 给定 ...
- hihoCoder1498-Diligent Robots
#1498 : Diligent Robots Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB Description The ...
- happymall 第十一章订单表 数据表设计
为订单号生成唯一索引,用用户id和订单号生成组合索引提高查询效率.
- RPM包效验
- FtpUtil.java测试 (淘淘商城第三课文件上传)
首先在common-taotao中创建一个utils包,复制FtpUtil.java到其中.然后如下: @Test public void testFtpUtil() throws Exception ...
- 分布式监控系统--zabbix
1Zabbix简介 Zabbix 是一个企业级的分布式开源监控方案. 2.监控系统架构 C/S架构 客户端/服务器端,这种架构适合规模较小,处于同一地域的环境 C/P/S 客户端/代理端/服务器端/, ...
- 使用ng-options指令创建下拉框
今天在学习AngularJs中使用ng-options指令创建下拉框时遇到点问题,这里总结一下. 其实,使用ng-options指令创建下拉框很简单,只需要绑定两个属性. ng-options指令用于 ...