poj-3522 最小生成树
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …,m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50 kruskal 求最小生成树 暴力枚举
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
using namespace std; const int maxn = 5e4 + ;
const int INF = 0x7fffffff;
int fa[], vis[maxn];
int n, m;
struct node {
int u, v, w;
} qu[maxn];
int cmp(node a, node b) {
return a.w < b.w;
}
int Find(int x) {
return fa[x] == x ? x : fa[x] = Find(fa[x]);
}
int combine(int x, int y) {
int nx = Find(x);
int ny = Find(y);
if(nx != ny) {
fa[nx] = ny ;
return ;
}
return ;
}
int kruskal(int x) {
int big = -INF, small = INF, k = ;
for (int i = x ; i < m ; i++) {
if (combine(qu[i].u, qu[i].v)) {
k++;
big = max(big, qu[i].w);
small = min(small, qu[i].w);
}
}
if (k!=n-) return INF;
if (k==) return ;
return big - small;
}
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if (n == && m == ) break;
for (int i = ; i < m ; i++)
scanf("%d%d%d", &qu[i].u, &qu[i].v, &qu[i].w);
sort(qu, qu + m, cmp);
int ans = INF;
for (int i = ; i < m; i++) {
for (int j = ; j <= n ; j++) fa[j] = j;
ans = min(ans, kruskal(i));
}
if (ans==INF) printf("-1\n");
else printf("%d\n", ans);
}
return ;
}
poj-3522 最小生成树的更多相关文章
- poj 3522(最小生成树应用)
题目链接:http://poj.org/problem?id=3522思路:题目要求最小生成树中最大边与最小边的最小差值,由于数据不是很大,我们可以枚举最小生成树的最小边,然后kruskal求最小生成 ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submis ...
- poj 2349(最小生成树应用)
题目链接:http://poj.org/problem?id=2349 思路:由于有S个专门的通道,我们可以先求一次最小生成树,然后对于最小生成树上的边从大到小排序,前S-1条边用S-1个卫星通道连接 ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
随机推荐
- 关于GPL329A添加摄像头驱动需要更改的配置脚本
我今天要添加一个ov2685的驱动进Digogo这部机子,当然要让它开机自动启动,就要想办法让它的.ko在启动文件系统的时候要自动被装载,这样上层打开摄像头才能加载摄像头驱动. 我找到源码工程对应添加 ...
- 《转》优化UITableViewCell高度计算的那些事
我是前言 这篇文章是我和我们团队最近对 UITableViewCell 利用 AutoLayout 自动高度计算和 UITableView 滑动优化的一个总结.我们也在维护一个开源的扩展,UITabl ...
- oracle 导入/导出遇到的 问题总结
0925: 解决oracle 11g空数据 exp 少表的问题 1:生成处理语句 Select 'alter table '||table_name||' allocate extent;' from ...
- 第1章-Struts2 概述 --- Struts2和MVC
(一)Struts2和MVC的关系图: (1)控制器---FilterDispatcher 用户请求首先达到前段控制器(FilterDispatcher).FilterDispatcher负责根据用户 ...
- JMM
1.JMM简介 i.内存模型概述 Java平台自动集成了线程以及多处理器技术,这种集成程度比Java以前诞生的计算机语言要厉害很多,该语言针对多种异构平台的平台独立性而使用的多线程技术支持也是具有开拓 ...
- MySQL的日志(一)
本文目录:1.日志刷新操作2.错误日志3.一般查询日志4.慢查询日志5.二进制日志 5.1 二进制日志文件 5.2 查看二进制日志 5.2.1 mysqlbinlog 5.2.2 show binar ...
- Spring Framework 5 中的新特性
https://www.ibm.com/developerworks/cn/java/j-whats-new-in-spring-framework-5-theedom/index.html Spri ...
- 【转】UNREFERENCED_PARAMETER的作用
UNREFERENCED_PARAMETER 的作用我们从 UNREFERENCED_PARAMETER 开始吧.这个宏在 winnt.h 中定义如下: #define UNREFERENCED_PA ...
- 通过终端使用ssh-keygen免密码登录远程服务器
使用终端ssh登录远程Linux服务器,每次不输入如密码 原理:使用keygen认证,实现免密码验证即可登录服务器. Linux(包括Mac OS): $ ssh-keygen /*生成密钥*/ $ ...
- es6(二):解构赋值
ES中允许按照一定格式从数组,对象值提取值,对变量进行赋值,这就是解构(Destructuring) let [a,b,c]=[1,10,100] console.log(a,b,c)//1 10 1 ...