poj-3522 最小生成树
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …,m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50 kruskal 求最小生成树 暴力枚举
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
using namespace std; const int maxn = 5e4 + ;
const int INF = 0x7fffffff;
int fa[], vis[maxn];
int n, m;
struct node {
int u, v, w;
} qu[maxn];
int cmp(node a, node b) {
return a.w < b.w;
}
int Find(int x) {
return fa[x] == x ? x : fa[x] = Find(fa[x]);
}
int combine(int x, int y) {
int nx = Find(x);
int ny = Find(y);
if(nx != ny) {
fa[nx] = ny ;
return ;
}
return ;
}
int kruskal(int x) {
int big = -INF, small = INF, k = ;
for (int i = x ; i < m ; i++) {
if (combine(qu[i].u, qu[i].v)) {
k++;
big = max(big, qu[i].w);
small = min(small, qu[i].w);
}
}
if (k!=n-) return INF;
if (k==) return ;
return big - small;
}
int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if (n == && m == ) break;
for (int i = ; i < m ; i++)
scanf("%d%d%d", &qu[i].u, &qu[i].v, &qu[i].w);
sort(qu, qu + m, cmp);
int ans = INF;
for (int i = ; i < m; i++) {
for (int j = ; j <= n ; j++) fa[j] = j;
ans = min(ans, kruskal(i));
}
if (ans==INF) printf("-1\n");
else printf("%d\n", ans);
}
return ;
}
poj-3522 最小生成树的更多相关文章
- poj 3522(最小生成树应用)
题目链接:http://poj.org/problem?id=3522思路:题目要求最小生成树中最大边与最小边的最小差值,由于数据不是很大,我们可以枚举最小生成树的最小边,然后kruskal求最小生成 ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...
- Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submis ...
- poj 2349(最小生成树应用)
题目链接:http://poj.org/problem?id=2349 思路:由于有S个专门的通道,我们可以先求一次最小生成树,然后对于最小生成树上的边从大到小排序,前S-1条边用S-1个卫星通道连接 ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
随机推荐
- Apache Kafka简介与安装(一)
介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计. 首先让我们看几个基本的消息系统术语: Kafka将消息以topic为单位进行归纳. 将向 ...
- JavaScript遍历XML总结
1:读取服务器端xml(注意不同浏览器版本的区别),使用XML可以增强系统的扩展性,只用修改XML就可以实现增加减少功能的目的. function loadXMLDoc1(dname){ if ...
- 在Redis Sentinel环境下,jedis该如何配置
在Redis主从复制架构中,如果master出现了故障,则需要人工将slave提升为master,同时,通知应用侧更新master的地址.这样方式比较低效,对应用侧影响较大. 为了解决这个问题,Red ...
- 关于Django Web应用架构设计开发的几个问题
1.关于分层,做过传统JEE应用的同学肯定知道JEE应用会分很多个设计层.根据传统Web应用架构设计一般从上到下分这么几个层(太懒了,不画图了):Web前端层.Web后端交互层.业务层.基础数据设施层 ...
- Django1.10 release notes摘编
一.重点新特性: 1.面向PostgreSQL的全文搜索支持 2.新式风格的middleware 3.用户名Unicode编码的官方支持 二.一些可以提的改变: 1.用户名最大长度增加到150 2.不 ...
- Jenkins实现Android自动化打包
转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/77102359 本文出自[赵彦军的博客] 1.Tomcat 进入 https://t ...
- Java开源生鲜电商平台-系统架构与技术选型(源码可下载)
Java开源生鲜电商平台-系统架构与技术选型(源码可下载) 1. 硬件环境 公司服务器 2. 软件环境 2.1 操作系统 Linux CentOS 6.8系列 2.2 反向代理/web服务器 ...
- python爬虫错误总结
这几天突然想到学习爬虫,于是就从python开始,python教程瞄了两眼,就去网上找别人写的爬虫(爬音乐网站的歌曲) 磕磕绊绊中渐渐地熟悉了python中常用的库和模块. 1.python 2.x( ...
- java之web开发过滤器
我们通常上网的时候都会遇到一个问题,看到一个视频之类的,想要点开观看,点击之后,网页 提醒你:您尚未登录,是否要登录?然后巴拉巴拉跑去输账号密码. 那么这就是一个过滤器的功能,当你要访问一个资源的时候 ...
- SOFA 源码分析 — 自动故障剔除
前言 集群中通常一个服务有多个服务提供者.其中部分服务提供者可能由于网络,配置,长时间 fullgc ,线程池满,硬件故障等导致长连接还存活但是程序已经无法正常响应.单机故障剔除功能会将这部分异常的服 ...